
 1 

 

 

State-Contingent Pricing as a Response to 

Uncertainty in Climate Policy

  

 

 
Ross McKitrick 

Department of Economics 

University of Guelph 

rmckitri@uoguelph.ca  

 

July 2011 

 
 

Abstract 

Uncertainties over the future path of global warming and the underlying severity of the 

problem make derivation of an intertemporally-optimal emissions price on carbon 

dioxide both theoretically and politically very difficult. A number of methods for dealing 

with uncertainty have dominated the economics literature to date. These involve trying to 

derive an emissions price or insurance premium to which agents are expected to make a 

long term commitment. This chapter explores an alternative approach based the concept 

of state-contingent pricing, in which agents commit to a pricing rule rather than a path. 

The rule connects current values of the emissions price to observed temperatures at each 

point in time. In essence, if the climate warms, the tax goes up, and vice versa. A 

derivation is provided showing how such a rule yields an approximation to the unknown 

optimal dynamic externality tax, yet can be computed using currently-observable data. A 

recently-proposed extension coupling the state-contingent tax with a tradable futures 

market in emission allowances would yield not only a feasible mechanism for guiding 

long term investment, but an objective prediction market for climate change. The 

advantage of the state-contingent approach for facilitating coalition-formation is also 

discussed, as are directions for research.  

 
                                                      

 This is a chapter prepared for Handbook on Energy and Climate Change, Roger Fouquet, ed., Cheltenham: Edward 

Elgar. 
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State-Contingent Pricing as a Response to 

Uncertainty in Climate Policy  

 
 

1. Introduction 
 

Suppose we have a time machine that allows us to visit the year 2040 just long enough to collect some 

climate data. Figure 1 shows the post-1979 globally-averaged lower tropospheric air temperature 

anomaly averaged over the two satellite series developed by, respectively, Spencer and Christy (1990) 

and Mears and Wentz (2005). This is only one of many data series people use to try and represent the 

global climate as a univariate time series, but it will do for the current illustration. Figure 1 shows the 

observed data from 1979 up to the end of 2010 (shown by the vertical line), and then runs the series 

forward using assumed trends and random numbers to conjecture two quite different futures. In the gray 

dots the next three decades exhibit continued variability but no upward trend, and even a slight 

downward trend. The black dots show variability and a strong upward trend. Now suppose that, given an 

identical future greenhouse gas emissions trajectory the data we collect in 2040 will look like one of 

those two paths. If we could find out which one would be observed, would it affect today’s policy 

choices?  
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Figure 1. Two conjectured atmospheric warming paths 1979-2040. Left of the vertical line are 

observations from weather satellites of the global average lower troposphere temperature anomaly. Right 

are conjectured using trends and random numbers.  
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Obviously the answer is yes. The fact that we do not know what the graph will look like has led to 

longstanding and well-known political difficulties in devising policy strategies. In this chapter I will 

critically review the main current approaches to dealing with the uncertainty, and then propose an 

alternative that I believe is more likely to lead to the right policy outcome than any others currently being 

examined. Briefly stated, my argument is as follows.  

 

 Forecast-based proposals (such as from Integrated Assessment Models, or IAMs) for making 

optimal climate policy decisions effectively assume we can agree what the data to the right of the 

line will probably look like, and we only need to resolve the time-sequence of emission pricing. 

While the optimal time-sequence is a significant puzzle to be solved, framing the issue in this 

way assumes away all the real uncertainty that makes the problem difficult in the first place. If 

we make a commitment to a long-term policy based on IAM analysis, when we get to, say, 2040, 

there is a high probability we will realize that we followed the wrong emission pricing path.  

 Bayesian updating and other learning strategies involve placing bets on the unknown future then 

observing the effects of the policy decisions and revising our strategy when we have learned 

enough to figure out if the bet was right or wrong. The main lesson of these approaches is that in 

the climate case, this kind of learning will be too slow to be of any use in guiding policy now or 

in the foreseeable future. Consequently, when we get to 2040, we will likely not know if we were 

on the correct path or not.  

 Each of the futures in Figure 1 implies a corresponding optimal emissions price path, which, for 

instance, might look something like those in Figure 2. If we knew the future temperatures with 

certainty, we would, in principle, be able to work out the optimal emission tax path.  

 The state-contingent approach involves starting an emissions tax at the current best guess as to its 

optimal level, then specifying a rule that updates it each year based on the observed climate state. 

As of the present we do not know what the path will look like, but if we choose the rule 

correctly, we can know today that as of 2040 we will have followed the closest possible 

approximation to the optimal price path. Furthermore, the greatest economic gains will accrue to 

agents that make the most accurate forecasts about the climate state, and hence, the emissions 

price. 

 Under a state-contingent pricing rule, the need for accurate forecasts of the future tax for the 

purpose of guiding investment decisions will create market incentives to make the maximum use 

of available information and the most objective climate forecasts to guide optimal behavioural  

responses to the policy. Consequently, while the state-contingent price path will only track the 

actual optimum within error bounds, there is no information currently available that could 

identify a better price path than the one generated by information markets induced by a state-

contingent pricing rule.  

 

The rest of this chapter explains these ideas in more detail.  
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Figure 2. Possible optimal emission price paths corresponding to future warming scenarios in Figure 1.  

 

 

 

2. Uncertainty and inertia problems in carbon dioxide emission 

pricing  
 

Sources of uncertainty 
In one respect, analysis of carbon dioxide (CO2) emission pricing is simple compared to other air 

emissions such as sulphur dioxide (SO2) or particulate matter (PM). Since there is no CO2 scrubber 

technology, knowing the amount of fuel consumed yields a close estimate of the total CO2 released, 

whereas fuel consumption can be quite uncorrelated with other emissions depending on the pollution 

controls and combustion technology in place. For that reason, CO2 emissions are easily represented in 

empirical and computational economic models, as long as the consumption levels of coal, oil and natural 

gas are resolved. However, the time element that connects CO2 to its external costs is considerably more 

complex than for other emissions. SO2 and PM do not stay aloft very long after release (days or weeks), 

and investment in a scrubber today will yield potentially large emission reductions within a year, so from 

a planning point of view the time path of control policies for these pollutants can be considered as a 

sequence of short-run decisions.  

 

In the CO2 case, however, time complicates the planning problem in several ways.  

 

a) The atmospheric residency of CO2 is measured in decades, so emissions today could potentially 

have effects many years into the future, and each year’s emissions have marginal effects that 

accumulate with those of other years; 

b) The response of the climate system to changes in the atmospheric stock of CO2 may be slow, 

especially if the ocean acts as a flywheel, delaying effects for decades or centuries; 
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c) Since there are no scrubbers, emission reductions must take the form either of changes in 

combustion efficiency, fuel-switching or reductions in the scale of output, all of which take time 

to plan and implement; 

d) Economically-viable technology for generating electricity and converting fossil fuels into energy 

is subject to innovation over time, and while it is reasonable to assume that some innovations and 

efficiency gains will be realized, the effects and timing of changes can only be conjectured; 

e) Since the stock of CO2 mixes globally, actions of individual emitters are negligible. The only 

policies that would affect the atmospheric stock must be coordinated among all major emitting 

nations, and such processes are slow and subject to uncertain success.  

 

Parson and Karwat (2011) examine these issues under the headings of inertia and uncertainty. If we 

faced only inertia, we could sit down today and devise an optimal intertemporal policy plan today that 

would yield the right sequence of interventions at the right time through the future. This is something like 

what IAMs do: assuming that we know the important parameters of the system, we can solve for the 

optimal intertemporal emission pricing path. On the other hand, if we faced only uncertainty, we could 

make short-term decisions on the expectation that new decisions would be made at each point in the 

future as circumstances change. It might be argued that this is more like what climate policy has been in 

practice for the past 20 years: a series of short-term decisions that resolve momentary political pressures, 

but which do not seem rooted in an overall intertemporal plan. Faced with both uncertainty and inertia, 

Parson and Karwat conclude that sequential decision-making is necessary, though they do not spell out 

how such a process would work in practice. The state-contingent approach, it will be shown, attempts to 

create a formal structure for sequential decision-making in light of both uncertainty and inertia.  

 

With regard to climate change there are two very large sources of anxiety that have fueled decades of 

intense controversy. On one side are those who believe the threat from CO2 and other greenhouse gas 

emissions are substantial, and who fear that inadequate policy actions are being taken, so that future 

generations will experience serious welfare losses due to global warming. On the other side are those 

who believe the threat from CO2 and other greenhouse gas emissions are small, and who fear that 

implementation of policies sufficiently stringent to achieve large emission reductions will impose costs 

on current and future generations far larger than any benefits they yield. For the first group, the fear is 

that by the time enough information is obtained to resolve uncertainty about the environmental effects of 

CO2 it will be too late to avert intolerable environmental  damages. For the second group, the fear is that 

if we act now to try and prevent such damages we will have incurred intolerable economic costs by the 

time they are shown to have been unnecessary.  

 

So-called “no regrets” policies are sometimes invoked to try and make this wrenching dilemma 

disappear, but they are irrelevant to the discussion. There is a strain of argument that says, in light of the 

threat of catastrophic (or even somewhat harmful) global warming, we must act, and the actions we 

propose would actually make us better off by saving energy and reducing air pollution anyway, so on 

balance it is better to implement them. This argument fails once the details are examined. The scale of 

emission reductions necessary to substantially affect the future stock of global atmospheric CO2 is quite 

large, namely worldwide reductions of some 50% or more, and marginal local changes in energy 

efficiency would not begin to be sufficient. Improvements in energy efficiency that actually make 

consumers and firms better off are automatically adopted by rational economic decision-makers anyway, 
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yet CO2 emissions continue to rise globally as population and income rise. And air pollution is already 

subject to regulation throughout the developed (and much of the underdeveloped) world. If we assume 

that households, firms and governments have already made reasonably efficient decisions as to energy 

efficiency and pollution reduction, further large-scale reductions in CO2 emissions must be, on net, 

costly. In other words, policies that might have a trivial cost will only have trivial climatic effects. The 

policies that actually have an effect on the climate must entail a large economic cost. The dilemma is 

real.  

 

Integrated assessment models and pseudo-optimal solutions 
The IAM approach of Nordhaus (2007) and coauthors yields a solution that can be described as “pseudo-

optimal.” It assumes the modeler knows the key parameters that govern the economy and the climate, and 

solution of the model yields a smooth policy “ramp” in the form of an escalating tax on CO2 emissions 

over time. This solution can only be considered optimal if we assume the model parameters are correct. 

But strong assumptions about key functional forms and parameter values are not put to the test by 

implementation of the policy. If decision-makers were to commit to a policy path based on the IAM 

analysis, it would amount to acknowledging the inertia but not the uncertainty in the policy problem. The 

lack of recognition the extent of uncertainty in the IAM approach is one of the bases of the criticism of 

Weitzman (2009). 

 

Bayesian learning models 
Kelly and Kolstand (1999) and Leach (2007) introduced learning into the IAM framework by supposing 

that we observe the response of the climate to policy innovations, and then we use such information in a 

Bayesian updating routine. The goal is to accumulate enough information that the policymaker can 

decide, at 5 percent statistical significance, whether or not to reject the hypothesis that the correct policy 

is being implemented. Uncertainty and inertia interact in an interesting way: uncertainty about even one 

or two key inertia (lag) parameters is sufficient to delay for hundreds of years the identification of an 

expected-optimal policy rule. With only two model parameters subject to uncertainty, Leach (2007) 

showed the learning time ranges from several hundred to several thousand years, depending on the base 

case emissions growth rate. An expanded version of the model, incorporating simple production and an 

intertemporal capital investment structure, not only yields a time-to-learn measured in centuries, even 

when most model parameters are assumed known, but depending on which of several climate data sets 

are used to form the priors, the policy path may never converge on the correct target.  

 

It is an illusion to suppose that the IAM, or pseudo-optimal approach, is better, because we apparently 

follow an optimal path from the outset. The difference between them is that in the Bayesian approach we 

eventually learn if we are on the wrong path and in the IAM approach we never do.  

 

Insurance and fat tails 
Weitzman (2009) looked at the global warming problem as one of trying to price an insurance contract 

when there is a nontrivial probability of extreme damages. Geweke (2001) had shown that a basic 

insurance problem can become degenerate if a few features of the set-up are chosen in a particular way. 

If the risk is distributed normally and utility is of the constant relative risk aversion form, and the change 

in consumption over the insured interval is expressed as e
C
 where C is future consumption relative to 

current consumption, then the expected cost of insuring future consumption under some general 
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conditions can be shown to take the form of a moment generating function for the t distribution, which 

does not exist, or is infinitely large, making it impossible to place a finite value on a full insurance 

contract. Weitzman’s adaptation of this model to the climate case depends on some specific assumptions, 

some of which are conventional and some of which are not. One unusual assumption is that there is a 

possibility of infinite (+ or -) climate sensitivity, or in other words, that while the possibility of an 

extreme change in the climate (twenty degrees or more) may be small, it cannot be ruled out, no matter 

how large. To perform conventional cost-benefit analysis it is necessary either to truncate the range of 

climate sensitivities or assume that the distribution has “thin tails.” But, as Weitzman points out, this 

implies that the optimal insurance policy depends on assumptions about the distribution of possible 

climatic changes in regions where there are too few observations to know for sure. Hence cost-benefit 

analysis using IAMs assumes away extreme risks, and cannot therefore provide an economic case for 

ignoring them. Nordhaus (2009), Pindyck (2011) and others have critiqued the Weitzman model, 

especially for its assumption of infinite marginal utility as consumption gets very low.  

 

The state-contingent approach 
McKitrick (2010) proposed an alternative approach to the pricing of complex intertemporal externalities 

which focuses on developing an adaptive pricing rule, rather than a long term emissions path. In the 

standard economic model of pollution pricing, current damages are a direct function of current emissions: 

 

  

 

 

 

 

 

In simple problems of this sort, the solution is to impose an emissions price 

 

 )(
t

eD  (1) 

 

where D is the damage function and 
t

e  is total current emissions, which are assumed to be observable. In 

the presence of inertia, emissions may have lagged effects, and the length of the delay may itself be 

unknown. If so, then we are currently experiencing the effects not only of present-day emissions, but also 

of emissions that have occurred at some point in the past. A lag process may arise from stock effects in 

which the decay rate is less than 100% each period. But here we are interested in the case in which, 

instead of directly causing damages, emissions affect some aspect of the environment (such as the 

average air temperature, possibly with lags due to geophysical processes), and those changes cause 

damages. In that case the above diagram would be redrawn as follows.  
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Emissions affect an observable state variable )(ts  and current-period damages are a function of the 

current state variable ))(( tsD . The state variable, in turn, is determined as 

 

 ),...,,()( 1 kttt eeests    (2) 

 

where the lag length k is unknown. Equation (2) is sufficiently general to handle stock-flow problems. If 

the stock of emissions is denoted 
t

M , then the state may be described as the function )(
t

Ms , where 

ttt
eMM 

1
  and   is the stock decay rate. But since the emissions flow is the policy target it will be 

necessary to include 
t

e  in the specification of (2). A form like )(
t

Ms  would not lead to a policy-relevant 

conclusion since the policy maker cannot control 
t

M  (or past values of 
t

e ).  

 

Note also that s(t) is not, in most cases, the same as the stock of the pollution (i.e. the atmospheric 

concentration). It is therefore necessary to identify the correct state variable. Hsu (2011) discusses the 

state-contingent pricing option for carbon dioxide emissions and proposes a list of possible candidates for 

the state variable. The list will be critically evaluated below, but for the moment our point is simply that 

for a complex issue like global warming it can be difficult to agree on what to measure, and not all 

proposed values of the state variable make sense for the purpose of configuring an optimal policy 

mechanism.  

 

Setting that aside for now, given a definition of s the Discounted Present Value (DPV) of damages is 

 

 





0

))(()(
j

j jtsDtV   (3) 

 

where j  is the discount factor j periods ahead. The optimal emissions price is: 

 

 
te

tV
t






)(
)(  (4). 

 

The influence of current and past emissions on the state variable is complex and uncertain. While this 

adds to the difficulty of determining how current emissions ought to be priced, it also implies that the 

state variable contains information about the effect of emissions over time, and this information can be 

used to reduce uncertainty. The next section explains how to use observations on s to approximate )(t .  

 

 

3. Derivation of the State-Contingent Pricing Rule 
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Required Assumptions  
Following McKitrick (2010) the derivation requires a number of assumptions. 

 

(A1)  ASSUMPTION 1: The state function s is homogeneous of degree c. 

 

This implies  

 

 ),...,(),...,( ktt
c

ktt eesees     (5). 

 

We do not necessarily assume linear homogeneity.  

 

(A2)  ASSUMPTION 2:  Over the interval ),...,( ktkt  , s  is locally autonomous, that is,  

 
itt e

ts

e

its








 )()(
 for all ki ,...,0 .  

 

This imposes slightly more structure on s, as it implies the marginal effects over a lag of length i are 

independent of t. For example, suppose s depends on emissions out to three lags: 

 

 ),,,()( 321  tttt eeeests . 

 

At time t, the partial derivative with respect to the second argument is 
1

)(






t
e

ts
. At time t+1, the partial 

derivative with respect to the second argument is 
te

ts



 )1(
. (A2) requires that these partial derivatives be 

equal. This will be true, for instance, if s is a function of a weighted sum or moving average of the e’s. It 

will not be true if s is nonlinear in the individual e’s, in which case it will be true only approximately, 

where the approximation will depend on how much “curl” s has over time.  

 

 

(A3) ASSUMPTION 3: The function )(ts  is locally linear in te , and current period emissions 

must have a non-zero effect on )(ts .  

 

This assumption states that in the direction te , 




te

s
 in the neighbourhood of te , where   is a 

positive constant and may be arbitrarily small.  
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(A4)  ASSUMPTION 4:  At each time t, the damage function )(tD can be approximated by a 

step-wise quadratic (in emissions) function, such that at time t, t

jt

e
e

jtD








)(
 for 

kj ,...,0 . 

 

  

This is different from, and slightly more restrictive than, assuming D is quadratic. It states that the slope 

can be extrapolated forward at time t over k-1 subsequent periods, and that the extrapolation will be re-

set each period. (A4) can be pictured as an approximation for D by a porcupine-like pattern of tangent 

lines, as shown in Figure 3. The approximation will get worse the larger is k. However, in cases where k 

is large, effects mix slowly across long time spans and we would not expect total damages to be strongly 

nonlinear (convex) in current emissions, so the extrapolation is automatically used across a shorter 

interval in circumstances where it is less accurate over long intervals. In other words, the larger is k 

(implying greater potential inaccuracy in the slope extrapolation), the less is the likely curvature in D 

(implying less inaccuracy in the slope extrapolation). If D has a strong curvature then current emissions 

must have a rather strong immediate effect, so we expect the tangent lines in Figure 3 to be shorter, 

mitigating the extrapolation error. (A4) also implies that marginal damages are zero when emissions are 

zero, which is a common and reasonable assumption.  

 

(A4) combined with (A3) implies 

 

 t

jt

e
s

jtD








)(
 for kj ,...,0  (6) 

 

where  / , a positive constant. Neither c nor   are typically encountered in ordinary 

environmental policy models.   measures the change in damages due to a change in the state variable, 

per unit of emissions. c is the degree of homogeneity of the state variable, and thus equals the sum of the 

partials of s(t) with respect to k emission lags, with each term multiplied by )(/ tse
kt

. If we assume 

emissions are constant for k periods, the product c  can be shown to equal the sum of the partials of the 

damage function with respect to k lags of  e, all divided by s(t). In other words, c  can be thought of as, 

approximately, the marginal damage rate, or marginal damages proportional to the value of the state 

variable.  

 

The next assumption eliminates the role of discounting when summing marginal damages over the lag 

interval k. While it introduces a form of imprecision in the tax instrument, it is conservative in the sense 

that it will tend to overstate rather than understate the value of the sequence of damages.  

 

(A5)  ASSUMPTION 5:  In the evaluation of   using equation (3), j  is set equal to unity for 

kj ,...,1 . 

 

The discounted present value of damages is defined by Equation (3). Since emissions only have an effect 

for up to k lags we can write this as 
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FIGURE 3: Approximation of damage function embodied in Assumption A4 
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Now denote, respectively, moving sums, moving averages and weights of te  as 

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(A1) implies (by Euler’s theorem) 
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Hence 

 

 
 
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0
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Equation (8) states that tEtcs /)(  equals a weighted average of the partial derivatives of s. In situations 

where the emissions do not vary too much in percentage terms, over the k-period interval an unweighted 

mean will be a reasonable approximation to the weighted mean, hence: 

 

(A6)  ASSUMPTION 6:  
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




k

j jt

t
e

ts

k
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0

)(
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Combining (A6) and Equation (7) yields 

 

 tt

t

Etscke
e

tV
/)()1(

)(





  

 

Hence 

 

 )(~ ts
e

e

t

t
t    (9) 

 

where  c  and ~ denotes the approximation to the optimum. 

 

Equation (9) is the state-contingent pricing rule. It is an easily-calculated approximation to the marginal 

damages of the complex intertemporal externality shown in equation (3). Comparing it to equation (4), 

the trick to its usefulness has to do with how knowledge of the future is represented. In a system with 

inertia, emissions today will have an effect on the state variable over an uncertain span into the future. 

But this means that the current value of the state variable must also reflect the influence of past 

emissions. If the set of lag relationships extending over the past is structurally similar to the set of lag 

relationships that will extend into the future, then the current observation of s contains information about 

how past emissions affected today’s climate, and hence how today’s emissions will affect the future 

climate. Equation (9) uses that information to guide the emission price path. 
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Note that although (9) only uses information dated at time t, the underlying form of the tax is determined 

by equation (4). That means that, in principle, equation (9) charges firms today for the future value of 

their emission damages as well as the current value.  

 

There remains one assumption to invoke: te  is not known exactly since it depends on the unknown lag 

length k, so a lag length must be selected. However, trailing averages are smoothing devices, so unless 

the emissions series is extremely volatile, te  will be relatively stable across a range of choices of lag 

length.  

 

Figure 4, taken from McKitrick (2010), shows the implied value of the state-contingent emissions tax 

over the 1979-2010 interval, using the mean temperature of the tropical troposphere (see next section) 

and calibration of the free parameter to yield a value of $15 per tonne in 2002. The thick line is a 3-year 

moving average.  
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FIGURE 4: Value of state-contingent tax on greenhouse gas emissions since 1979. ‘avgtax’ denotes 

3-year moving average.  

 

 

McKitrick (2010) presented synthetic examples calibrated to the stylized facts of global warming, in 

which a series of complex and varied simulations into the future are shown, and in each case the state-
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contingent mechanism 
t

~  closely followed the unobservable optimum, even when known errors in 

approximation were introduced, with correlations typically in the >95% range.  

 

Choice of State Variable 
Assumption (1) requires that the state variable be chosen carefully, so that while it represents the factor 

that influences damages, as much as possible it represents the influence of emissions rather than 

exogenous factors. To give an example, while forest fires are costly, and potentially influenced by global 

warming, it would not make sense to use the number and extent of forest fires as the state variable for 

global warming since they are mainly influenced by causes unrelated to greenhouse gas emissions. 

Denote these other causes as x(t). If the state variable for forest fires is 
t

etxts )1()()(    and   is 

close to 1, then Assumption (1) can easily be seen fail.  

 

On the other hand, even though Assumption (1) would certainly hold if we simply used total emissions 

(or the atmospheric stock) as the state variable, this would not make sense unless it were known that the 

sensitivity term 1)(/)( tdetds  for all t, which is not the case, or at least it is not known to be the case. 

Imposing it by assumption means we are assuming away all the uncertainties over the magnitude of  

)(/)( tdetds . In the extreme, it would imply that 
t

e  should still be priced the same regardless of whether 

0)(/)( tdetds  or )(/)( tdetds , which is clearly not credible. CO2 has not historically been 

regulated as an air pollutant because it is naturally occurring and harmless for humans except at 

extremely high concentrations. It is only a candidate for policy intervention if it turns out to have a strong 

effect on the climate by changing atmospheric temperatures. So the state variable should be chosen to 

capture that contingency. 

 

Hsu (2011) correctly points out that the state variable must be non-manipulable and reliably, regularly 

and uncontroversially measurable. He then proposes a basket of measures arising from the tort principle 

of focusing on the harms done by climate change, which would include (a) the global mean temperature, 

(b) counts of days of “unusually” high or low temperatures, (c) counts of extreme rainfall or drought 

events, (d) rises in sea level, (e) ocean acidity and (f) numbers of hurricanes above a certain intensity 

level. The weighting scheme is not specified.  

 

McKitrick (2010), by contrast, proposes just one measure, the mean temperature of the tropical 

troposphere. This is based on the argument that, as well as being non-manipulable and reliably 

measurable, the state variable must represent an index of the unique effect of emissions with as rapid a 

response time as possible. The climate modeling work surveyed in the 2007 IPCC Report (IPCC 2007) 

and Karl et al. (2006) clearly points to the tropical troposphere as a place in the climate system where an 

unusually strong and rapid signal of the effects of greenhouse gases should be observable. Thorne et al. 

(2011) and Fu et al. (2011) provide updated analyses emphasizing the importance of the response to 

greenhouse forcing in the tropical troposphere as a metric of climate sensitivity, since this is where 

climate model behaviour is strongly constrained. The Arctic surface temperature is also believed to be 

strongly influenced by greenhouse gases, but is also strongly influenced by natural phenomena and, being 

an oceanic region, is subject to poor spatial sampling.  
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The Hsu basket approach includes measures that can be criticized on the grounds mentioned above. The 

tort concept is not the appropriate criterion for picking a state variable, instead the connection to 

greenhouse gases is. The tort concept matters when it comes to estimating parameters of the damage 

function, but that is a different step.   

 

Items (b), (c) and (f) are sub-grid scale weather phenomena with poorly-understood and controversial 

connections to greenhouse gases. The history of global weather shows that extended intervals of elevated 

drought conditions or excessive moisture can and do arise purely due to natural variability, so these 

measures do not satisfy Assumption (1). In other words, such index terms could go up (or down) for 

extended periods even if greenhouse gases turn out to have no effect on the climate. Item (e) is not an 

effect of global warming, it is potentially a measure of the atmospheric CO2 level since acidification (or 

reduced alkalinity) would occur if large enough quantities of CO2 were to dissolve in the world’s oceans. 

While use of this measure would make sense if the state variable were ocean alkalinity (and the damage 

function were defined accordingly), if the damages are connected to atmospheric warming the use of 

ocean alkalinity would, at best, be equivalent to making emissions the state variable, which is a flawed 

concept for the reason noted above. Item (d) has a somewhat controversial connection to global warming, 

as Hsu notes, with sharply varying projections as to the rate of rise over the coming century. The main 

deficiency as a state variable is that sea levels have apparently followed a steady upward trend for 

centuries, and what is at issue is not whether this will continue but whether global warming will cause it 

to accelerate. So the more relevant concept would be the acceleration of sea level rise. But the oceanic 

system is so slow to respond that any acceleration may not be apparent for a long time, due to the inertia 

involved. Finally, item (a) suffers from controversy and data quality problems (see, for instance, de Laat 

and Maurellis 2006, McKitrick and Nierenberg 2010, Fall et al. 2011), especially over the ocean 

(Thompson et al. 2008, Christy et al. 2001), as well as being subject to many influences other than 

greenhouse gases, which is why the satellite-based mean temperature of the tropical troposphere would 

be a more accurate state variable in this context (see discussion in McKitrick 2010).  

 

These are all very large issues and the above summary paragraph is not sufficient to dispose of them all. 

Indeed one of the benefits of the state-contingent approach is that it forces a discussion on the issue of 

how climate change ought to be measured. The fact that it is hard to come up with a simple answer 

provides some needed context to the policy discussion, namely that there is work to be done simply to 

clarify what we are talking about before supposing we are in a position to measure the costs and benefits 

of policy. If we do not agree on how to measure global warming, how would we know if a policy, once 

enacted, was making a difference?  

 

 

 

4. A permits-based prediction market to generate future prices 
Use of a state-contingent, myopic pricing rule does not mean that we only put a price on emissions after 

the damage is done, since the approximation is to the discounted present value of current and future 

emissions. Also, businesses are forward-looking and investment plans are based not only on today’s 

prices, but on expectations of future prices. While those forecasts may be wrong, there is no incentive for 

firms to make systematically biased forecasts, since in the future the actual prices will be revealed and 
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mistakes will be costly. However, the basic proposal in McKitrick (2010) does not reveal the 

expectations in the market, except as they are implicit in firms’ investment decisions.  

 

In order to reveal the future price expectations, Hsu (2011) proposed extending the tax rule of McKitrick 

(2010) to include a tradable exemption permits market for future periods. The permits market would 

allow firms in year t to purchase a per-tonne exemption from paying the tax in years t+1, t+2, etc., out to 

the limit of the forecast horizon. Hence it would establish, in effect, a  prediction market for the state-

contingent tax, and by implication, the state variable. As with any prediction market, the maximum 

financial rewards would accrue to those who make the best forecasts, so the published list of price 

futures would then imply an optimal and objective set of climate forecasts.  If agents believe the permit 

price for year t+10 (say) is below the likely value of the tax rate, or in other words if agents believe 

people are underestimating the amount of likely warming between now and then, they will have an 

incentive to buy permits, and will thereby drive up the price. And likewise, agents who believe warming 

is being overestimated will have an incentive to sell permits, or short the market.  

 

Hsu (2011, pp. 33-35) captures well the incentives this would create for basing forward investment 

behaviour on the most accurate possible scientific information about climate: 

 

The price bid by emitters for say, permits to emit in 2020, would speak volumes about private 

expectations of the consequences of climate change, free from, as climate skeptics claim, 

conspiracies by climate scientists to shore up their research grant fiefdoms, or desires by radical 

environmentalists who really wish to use climate change as an excuse for imposing 

environmental restrictions. ….Without an obvious ideological horse in the race, emitters like 

[American Electric Power, AEP] will brutally and honestly evaluate the credibility of climate 

science, and spend its climate investigation money carefully. It is the participation of large 

emitters in a cap-and-trade program for emissions futures that is likely to make or break the 

credibility of climate science. In essence, this proposal uses markets to turn the evaluation of 

climate science over to those emitters that will potentially rely on those permits for their emitting 

operations. And such a liability could be very significant: in 2005 AEP emitted approximately 

161 million tons of CO2; if one assumed a very modest carbon tax that was set to five dollars per 

ton at current climate outcomes, AEP's annual carbon tax liability would be about $805 million. 

If climate outcomes increased by say, twenty-five percent, its annual carbon tax liability would 

top one billion dollars. All 101 electricity generators in the EPA's Egrid database would have a 

combined current carbon tax liability (assuming a rate of five dollars per ton of CO2) of $8.75 

billion. Environmental advocates may chafe at the notion that the greatest greenhouse gas 

emitters will have such a large say in evaluating the quality of climate science, but $8.75 billion 

is a lot of impetus for honestly evaluating climate science. 

 

 

Some of the concern expressed by authors like Stern (2006) and Weitzman (2009) is that the climate may 

be subject to nonlinear effects of greenhouse gases (Hsu 2010 also raises this concern). Future 

greenhouse warming may be subject to sudden, rapid acceleration into catastrophic levels of 

environmental damage. But when we consider how to integrate this possibility into current decision-

making, we confront the same dilemma as before, namely between the fears of highly costly potential 
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environmental damages and highly costly potential policy mistakes. The prospect of sudden catastrophic 

change only amplifies the magnitude of each of these two apparently awful options. But now imagine a 

state-contingent tax is implemented along with a thirty-year sequence of prediction markets. Suppose 

initially the prediction markets show a slow, smooth ramp in CO2 emission prices. This would indicate 

the market discounts the possibility of a serious bifurcation or (so-called) “tipping point” into 

catastrophic change. But to the extent that anyone can construct a credible scientific argument that a 

bifurcation is approaching, they would know that those emission futures are underpriced and they be able 

to invest profitably in them, knowing that once their scientific arguments were digested by the prediction 

market, there would be a predictable ramp in prices. The prediction market would be the most reliable 

instrument available for generating a rational signal of a coming bifurcation. Again, the reason is that 

firms would have a strong financial incentive to get the climate science right, to whatever extent possible, 

and not to make a systematic forecast error or adopt a disingenuous view of the underlying problem. If an 

objective information-processing system like a prediction market existed, research warning of a climate 

nonlinearity would be “brutally and honestly” evaluated, and could potentially be the basis for a spike in 

emission price futures, thereby providing an instantaneous signal of the gravity of the threat. For this 

reason, while the state-contingent price mechanism is not guaranteed to resolve the uncertainty at the 

core of Weitzman’s analysis, it provides incentives for the maximum possible resolution; in other words, 

no other policy path could provide a more objective basis for forming expectations about possible future 

catastrophes.  

 

The tradable futures market would not allow firms to evade paying the tax on future emissions, since they 

would have to buy the exemption permits. Instead it would allow firms to trade on changes in 

expectations about the future path of the state variable and the emissions price. This illustrates another 

distinction between the state-contingent approach and the IAM approach. In the latter, it is assumed that 

we possess correct, unbiased scientific information regarding climate, and all we require is a mechanism 

to implement the optimal price. No allowance is made for the possibility that key parameter estimates 

(such as climate sensitivity) might be biased due to distorted incentives for scientists who prepare such 

forecasts. In the IAM approach, implementation of the policy does not induce an improvement in the 

scientific basis of policy. But the approach in this chapter does not assume we have correct scientific 

information. It works even if the information we have today is incorrect, either through technical 

inadequacy or researcher bias. The policy mechanism rewards those agents that eliminate bias and 

inaccuracy in their forecasting work, by allowing them to trade in futures markets on the difference 

between the current market price and their expectations of how it will evolve.  

 

Some implementation issues that need to be addressed for other types of policy would also need to be 

addressed in the present analysis. For instance, ideal implementation would be at the global level with 

each country imposing the tax based on damage valuations over the whole world, rather than at the 

national level. But incentives favour free-riding, making it difficult to ensure global participation. On the 

other hand, the tax approach has the advantage that revenues can be retained domestically to reduce the 

excess burden of the tax system, reducing the macroeconomic cost of implementation, and the state-

contingent nature of the policy provides reassurance that the stringency will be increased only if the 

underlying problem is shown objectively to merit such tightening, and both these features may increase 

incentives for multilateral cooperation compared to alternative policies.  
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Another potential issue is that as new information becomes available, policymakers may decide the initial 

calibrated value of the tax was incorrect and must be revised. This too would be a problem for any policy 

mechanism. In the state-contingent case an argument can be made that incentives favour efficient 

acquisition of the information required to optimally calibrate the tax. In this regard the feedback between 

policy and science would be particularly fruitful, since emitters subject to the tax will have an incentive 

to pay for the best, most objective information they can get, and there is no assumption that the forecasts 

made prior to implementing the policy are correct, or will be validated in the future.  

 

 

5. Further Extensions to the Basic Concept 
 
Endogenous emissions response 
Since no information about abatement costs are used in deriving the tax t, it may seem that it cannot be a 

complete policy prescription. The tax paths derived in integrated assessment models are solutions to a 

two-sided optimization problem, with intertemporal damages netted against intertemporal abatement 

costs. However, it is important to bear in mind that the formula above does not prescribe a policy path, it 

yields a rule that ties the tax rate to the environmental state. The actual path of taxes over time will be 

determined by the evolution of the state variable, and the ensuing level of abatement will be determined 

by emitters who respond to the current and expected future tax rates according to their current and future 

marginal abatement costs. If the capital stock is highly variable then firms will respond to current 

emission tax rates as they would to any variable input costs. If capital is fixed and time-to-build lags are 

long, firms will need to form forecasts of the future values of the tax rate, which in turn will depend on 

future values of the temperature variable, and the usual structure of optimal investment under uncertainty 

will ensue. 

 

The simulations in McKitrick (2010) assume that the emissions tax )(t  is a function of the future state 

)(ts , but not vice-versa. The coherence between the approximate tax, given by equation (9), and the 

actual optimum is demonstrated with this assumption in force. However, it is likely to be the case that 

)(ts  is a function of )(t  as well. This will certainly be true if emission tax increases reduce future 

temperatures, but it will also be true as long as they reduce future emissions since e(t) enters equation (9) 

directly, as well as through s(t), and the emissions path in McKitrick’s simulations are exogenous. The 

rationale is that emissions are added up globally whereas the tax is imposed by single governments, and 

no one country can do much to reduce global total emissions through unilateral action. However, if all 

countries (or a substantial majority) were to enact the tax, total emissions would be affected by the path 

of )(t . In that situation it has not been shown that the state-contingent pricing rule would yield a stable 

approximation to the true optimum. This is something that needs to be addressed in subsequent research.  
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Coalition-formation 
An interesting feature of the state-contingent tax is its potential ability to appeal to a broad coalition of 

interests.1 People with conflicting expectations about the future evolution of the state variable will 

nevertheless each expect to observe his or her preferred policy path. Those who think emissions have no 

effect on climate will expect low emission taxes to prevail in the future, and those who think they have 

strong effects will expect the tax to increase rapidly. Since each agent expects to get his or her preferred 

outcome, it may be easier to get agreement for implementation. One of the challenges of climate policy is 

the need to get agreement at the global level. Different regions have different views on the urgency of the 

problem and how it compares to their domestic economic priorities, which makes it all but impossible to 

get agreement on emission targets, or to ensure compliance with earlier agreements. Asking policymakers 

around the world to agree on a state-contingent tax might be easier. The tax revenue would stay within 

each country, reducing the burden of inequality across different nations. And during the negotiations, 

there would be no reason for countries that took opposing views on the likely future path of temperatures 

to take opposing views on whether the tax is desirable, since each party will expect to get what they 

consider to be the “correct” outcome.  

 

Suppose the stringency, and hence costliness, of a policy can be summarized as a parameter z, where a 

higher value of z corresponds to a more stringent policy. A potential voter (person i) has a private view of 

the optimal value of z given his or her beliefs about the marginal effect of emissions on s(t), which we 

denote by s
i
. Their preferred policy is thus zi(s

i
). If z < zi(s

i
) then the proposed policy is deemed too lax, 

and vice versa.  

 

Typical median voter models only require z ≥ zi(s
i
) to ensure voter i's support, namely people are satisfied 

as long as z equals or exceeds their preferred policy. But suppose the voter’s support for a policy z 

declines based on the distance (z > zi(s
i
)), i.e. z can be too strict even for someone who prefers a relatively 

high value. In this case, obtaining majority support can be difficult since it faces two-sided opposition. 

For example, a moderate emissions price might be opposed by those who prefer it to be much higher, as 

well as much lower. But proposals to adjust z up or down may alienate as many supporters as they would 

attract, making it impossible to get a majority.  

 

Suppose a potential voter uses a quadratic loss function like Li = [zi(s
i
) - z]

2
 to determine his or her degree 

of opposition to the policy. Then the greater the variance of beliefs about s
i
, the smaller the coalition of 

support for any policy. The state-contingent approach can potentially alleviate this problem, however. 

The policymaker no longer proposes a fixed value of z, but instead proposes a function of the observed 

state z(s(t)) over time. Each agent will then expect future values of s to be correlated with s
i
, hence the 

sum of the expected loss terms Li will be smaller than before, even if the variance of beliefs about s
i
 

remains large. Intuitively, by proposing a policy target that is dependent on the actual future state, each 

agent “expects” to get his or her preferred outcome. The one who expects the emissions to have a large 

effect expects the policy to end up being stringent, while the one who expects emissions to have little 

effect expects the policy to end up being lax. Consequently both types of agents expect small losses from 

                                                      
1
 As an anecdotal illustration, Hsu (2011) and McKitrick (2010) hold very different views on the underlying threat of 

global warming, yet both advocate the same policy mechanism, albeit with different recommendations as to the 

appropriate state variable.  
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the policy, and have an equally strong incentive to support it, even though they have conflicting views 

about the form it will actually take. 

 

 

6. Conclusions 
Uncertainties over the future path of global warming and the underlying severity of the problem make 

derivation of an intertemporally-optimal emissions price on carbon dioxide both theoretically and 

politically very difficult. IAM-based approaches to the problem assume knowledge of a lot of key 

parameters, while learning models suggest it will take too long to resolve those uncertainties to be of 

much use in the current debate. If all conceptually-possible climate risks are considered, it may be 

impossible to place a finite value on full insurance against those risks without arbitrarily truncating the 

range of extreme outcomes being considered.  

 

A fundamental problem with the existing analyses of carbon dioxide pricing is that agents and 

policymakers cannot commit to a long term emissions price. The issue is polarized such that fear of two 

very large potential mistakes seems to have paralyzed the decision-making process, namely fear of 

climate catastrophe due to failure to act, and economic catastrophe from inept action. The nature of the 

climate issue makes these fears justified.  

 

This chapter explores an alternative approach based the concept of state-contingent pricing, in which 

agents commit to a pricing rule rather than a path. The rule connects current values of the emissions price 

to observed temperatures at each point in time. In essence, if the climate warms, the tax goes up, and vice 

versa. A derivation is provided showing how such a rule yields an approximation to the unknown optimal 

dynamic externality tax, yet can be computed using currently-observable data. A recently-proposed 

extension coupling the state-contingent tax with a tradable futures market in emission allowances would 

then yield not only a feasible mechanism for guiding long term investment, but an objective prediction 

market for climate change.  

 

There are many potential advantages of the state-contingent approach. For one thing, people with 

divergent views on the nature of the climate issue can still potentially commit to the same instrument, 

since each one would expect to get his preferred outcome. The rule is structured such that, however the 

future unfolds, in retrospect we will know that we followed a reasonably good approximation to the 

optimum, and the incentives along the way favour the use of unbiased forecasts of the pricing path to 

guide investment decisions. Consequently there are informational, as well as theoretical and practical, 

advantages to the state-contingent approach, which make it worth exploring in more depth as a 

potentially viable tool for implementing sound climate policy.  
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