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1. Introduction

While current global warming certainly has a large anthropogenic component, its
quantification relies primarily on complex GCM assumptions and codes; it is desirable to
complement this with empirically based methodologies. Previous attempts to use the recent
climate record have concentrated on “fingerprinting” [Knutti et al., 2002] or otherwise
comparing the record with GCM outputs [Wigley et al., 1997]. By using CO: radiative
forcings as a linear surrogate for all anthropogenic effects we estimate the total
anthropogenic warming and effective climate sensitivity finding: A7, = 0.87+0.15 K,
Aoxcorerr = 3.08 £0.95 K. These are close the IPPC 2007 (AR4) values AT, = 0.74+0.18 K
and A, 0, = 2 - 4.5 K (equilibrium climate sensitivity) and are independent of GCM
models, radiative transfer calculations and emission histories. We, statistically
formulate the hypothesis of warming through natural variability by using centennial scale
probabilities of natural fluctuations estimated using scaling, fluctuation analysis on
multiproxy data. We take into account two nonclassical statistical features - long range
statistical dependencies and “fat tailed” probability distributions (both of which greatly
amplify the probability of extremes). Even in the most unfavourable cases, we may reject

the natural variability hypothesis at confidence levels > 99%.



In the recent epoch (here, since 1880) solar and volcanic forcings and changes in land
use have had very little impact on GCM variabilities, the latter are apparently dominated by
anthropogenic emissions (greenhouse gases and aerosols [Lovejoy et al., 2012b], appendix
figs. B1, B2). This is consistent with recent work showing that the main regional skill of
GCM climate predictions is precisely in their ability to model the effects of emissions [van
Oldenborgh et al., 2012)]. In addition, a comparison of the variability of various solar and
volcanic reconstructions shows [Lovejoy and Schertzer, 2012a] that the recent period has
statistically very similar solar forcings when compared to 1610-1900 and that over a wide
range of scales, the volcanic forcings are factors 2 - 3 weaker than for the period 1500-1900
(appendix fig. B3). These forcings are thus unlikely to be relevant for explaining the recent
warming.

2. A simple statistical hypothesis about the warming

If the anthropogenic forcing is strong enough, then a simple model may suffice:

(t)=T,,(t)+AT,, (1) +e(z) (1)

Where Tgope 1s the measured mean global temperature anomaly, 7., is the (large)

T

globe

anthropogenic contribution, AT,, is the (perturbation) natural variability and € is the
measurement error. The latter can be estimated from the differences between the various
observed global series and their means; it is nearly independent of scale [Lovejoy et al.,
2013] and sufficiently small (= £0.03 K) that we ignore it.

Let us consider T,,; it should be proportional to radiative forcings (Rr); denoting the
total anthropogenic value by Rpum we have: Ty = A Rpann Where A is the climate

sensitivity. For CO,, there is general agreement about its R:



Rico, = Rp 5. c0, log(pco2 /pCOZ,pre); R co, = 3IW I m?; Pco, pre = 2T ppm  (2)

where Rr oz 1s for CO, doubling, the values are from AR4. As detailed in Methods, since
1880, the emissions of CO;, other long lived Greenhouse Gases (GHG) and aerosols, are all
functions of global economic activity, so that the simplest strategy is to consider Rr co: to be
a well-measured linear surrogate for Rp 4.; this avoids radiative transfer and GCM modeling

- including the considerable uncertainties that still surround the aerosol effects (appendix fig.

B9). Fig. 1 shows the resulting regression of log, (pCOZ(t)/pCOZ,m) against Tgiope(t); the

result is indeed fairly linear with slope equal to the effective climate sensitivity to CO>
doubling: A2xcozerr = 2.33+0.22 K (for 5 year averages for 1880-2004 and 1959-2004,
the correlation coefficient is respectively r = 0.38, 0.62). If desired, for the effects of a
pure COz doubling, we may use the proportionality constants 0.645 and 1.25 between
Rranen and Rrcoz (strong and weak aerosols, deduced from [Myhre et al., 2001], [Bauer
and Menon, 2012], see Methods): A2xcoz,pure = 3.61£0.34 and 1.86+0.18 K respectively.
It may be objected that the most immediate consequence of Ry is to warm the
oceans [Lyman et al., 2010] so that we expect a time lag between the forcing and
atmospheric warming (e.g. [Hansen et al., 2005] finds a lag of 25- 50 years). By
considering the time lagged cross correlation between Rr co2 and Tyop it 1s found that at zero
lag the cross-correlation reaches a value of =0.4 and stays fairly constant until lags of =~ 20
years after which it quickly decreases (appendix fig. B4); the range 0 - 20 years brackets the
significant range. If the above analysis is repeated with a 20 year lag, then the sensitivity
increases to A, coper = 3.82+0.54 K and slightly improves the statistics of the residuals, see

below and appendix fig. B8. If we attribute the difference in the lagged and unlagged values



to random uncertainty, then we obtain the estimate A, o, = 3.08 £0.95 K. However,
comparison with CO, data from Mauna Loa and the South Pole (since 1959) shows cross
correlations decreasing after zero lag (appendix fig. B5) so that the relevance of using
nonzero lags is unclear. All of the A,, o, estimates are comparable to others: e.g. 2- 4.5
K (AR4, see Methods). Our estimate has the advantage of being not only independent of
GCM’s, but also with respect to assumptions about radiative transfer, historical GHG

and aerosol emission histories.
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Fig. 1: The mean global temperature estimated from NASA-GISS, NOAA NCDC,
HADCrut3 data bases as a functions of the logarithm of the mean CO; concentration
from[Frank et al., 2010]. The dashed lines represent the one standard deviation
variations of the three series at one year resolution, the red line is the mean with a 10
year running average. Also shown is the linear regression with the effective climate
sensitivity to COz doubling: 2.33 +0.22 K.
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Fig. 2: The three lower curves are the means of the three multiproxies discussed in the
text over three consecutive 125 year periods starting in the year 1500 with their
standard deviations indicated. Each segment had its overall mean removed and was
displaced by 0.3K in vertical for clarity. The fourth curve from the bottom is from the
(unlagged) residuals with respect to the CO> regression in fig. 1 (1880-2004). The top
curve is the annual resolution mean temperature. Whereas the curves from the three
multiproxy epochs are quite similar to the residuals in the recent epoch, the actual
recent epoch temperature shows a fairly systematic increase.

While the linearity of fig. 1 is encouraging (even impressive), its interpretation as
representing an anthropogenic component is only credible if the residuals (ATa(?)) have
statistics very similar to those of Tgjpe in pre-industrial epochs (where 7,4 = 0) so that they
could all be realizations of the same stochastic process. From fig. 2 - at the visual level — we
see that the residuals are indeed comparable with similar preindustrial 125 year epochs

(1500-1624, 16325-1749, 1750-1875) as estimated from three multiproxy series[Huang,



2004], [Moberg et al., 2005], [Ammann et al., 2007]. To make this similitude
quantitative, in fig. 3 we consider the fluctuations as functions of time scale At where
fluctuations AT(At) are defined as the absolute differences in the means over the first
and second halves of the interval At. This (“Haar”) fluctuation has advantages over

simply using the difference in temperature over the interval [Lovejoy and Schertzer,

2012b] (see Methods).
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Fig. 3: The top (pink and green “Haar”) curves show the RMS Haar fluctuations for the
surface series (top, from [Lovejoy and Schertzer, 2012c]) and residuals (black) from
1880-2004 along with the corresponding curve for the multiproxies from 1500-1900
(long green curve) and one standard deviation error bars (dashed) estimated from the
three 125 year epochs indicated in fig. 2. Over most of the range we see that the
residuals are pretty much within the one standard deviation limits. The Haar
fluctuations were multiplied by a “calibration” factor = 2 so that they would be close to



the difference fluctuations and then shifted upwards for clarity by a factor 2.5. Note
that a straight line slope H corresponds to a power law spectrum exponent 1+2H so
that a flat line has spectrum E(®) = !, and hence long range statistical dependencies
(Gaussian white noise has slope -0.5). The roughly linear decline of the multiproxy
variability to about At % 100 years is the (fluctuation cancelling) macroweather regime,
the rise beyond it, the “wandering” climate regime [Lovejoy, 2013], [Lovejoy and
Schertzer, 2013a].

The lower (blue) curves show the RMS difference fluctuations with one standard
deviation limits (dashed) estimated from the epoch to epoch variability. The solid lines
have slopes 0.15, 0.4 the former represent estimates of the mean and one standard
deviation limits of the difference fluctuations. From the graph, at 125 years, this may
be estimated as 0.20+0.03 K.

In figure 3, first note the comparison of the RMS fluctuations of the three surface
series (1880-2008) with those of the three multiproxies (1500-1900). Up until A¢ =10 years
they are quite close to each other (and slowly decreasing), then they rapidly diverge.
However when we consider the RMS residuals we find they are mainly within the one
standard deviation error bars of the epoch to epoch multiproxy variability so that removing
the anthropogenic contribution gives residuals A7, with statistics close to those of the pre-

industrial multiproxies (see also appendix fig. B7).
3. Estimating the probability that the warming is a consequence of natural
variability

Regressing Rr,coz against the global mean temperature leads to satisfactory results in
the sense that the residuals and preindustrial multiproxies are plausibly realizations of the
same stochastic process. However, this result is not too sensitive to the exact method of
estimating 7. and AT, - the 20 year lagged residuals are a bit better although using
simply a linear regression of Tyiobe against time is substantially worse; see appendix figs. B6,
B8. From the point of view of determining the probability that the warming is natural, the

key quantity is therefore the total anthropogenic warming AT, = T,,(2004) - T,,(1880).



Using the log,p method (fig. 1) we find AT, = 0.85+0.08 K and with a 20 year lag
~0.90+0.13 K. Treating the lag as a random uncertainty and combining the lagged and
unlagged estimates, we obtain A7, =~ 0.87 = 0.15; for comparison, for the linear in time
method, we obtain =0.75+0.07 K. We can also estimate an upper bound - the total range
ATylobe range = Max(AT giope) = 1.04£0.03 K so that (presumably) AT <ATgioberange-  NOte that
although in principle the probabilities could be estimated from the variability of
multicentennial GCM variability in the pre-industrial epoch, these may be a bit too
weak[Lovejoy et al., 2012a] (see appendix figs. B1, B2).

We now estimate the probability distribution of A7 from the multiproxies first over
the shorter lags with reliable estimates of extremes (up to Atz = 64 years, fig. 4), and then
using the scaling of the distributions and RMS fluctuations to deduce the form at Az = 125

years, see Methods. We find the 125 year RMS temperature difference

172
((AT(125)") =0,, = 0205003 K. Since theoretically, scaling is associated with

probabilities with power law “fat” tails (i.e. Pr(AT>s) = 5P for the probability of a
fluctuation exceeding a threshold s; gp is an exponent), in fig. 5 we compare gp = 4, 6 and
qp = (a pure Gaussian). We see that the former two values bracket the distributions

(including their extremes) over the whole range of large fluctuations (the extreme 3%).
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Fig. 4: This shows the total probability of random absolute temperature differences
exceeding a threshold s (in K). To avoid excessive overlapping, the latter were
compensated by multiplying by the lag At (in years, shifting the curves to right
successively by logi02 = 0.3), the data are the pooled annual resolution multiproxies
from 1500-1900. The reference curves are Gaussians with corresponding standard

deviations (dashed) and with tails (Pr ~<3%) corresponding to bounding At# and At®
behaviours.

Stated succinctly, the statistical hypothesis on the natural variability is that its
extreme probabilities (Pr <3%) are bracketed by a modified Gaussian with gp between
4 and 6 and with standard deviation (and uncertainties) given by the scaling of the
multiproxies in fig. 3: 6125 = 0.20+£0.03 K. With this, we can evaluate the corresponding
probability bounds for various estimates of A7, These probabilities are conveniently

displayed in fig. 5 by boxes. For example, the AR4 AT, = 0.74 + 0.18 K (thick red box)



yields a probability (p): 0.009% < p < 0.6% whereas the (unlagged) log,pcoz regression
(filled red box) yields 0.0009% < p < 0.2% and the 20 year lag (dashed blue) yields 0.002%
< p < 0.2%, with most likely values (using gp = 5) of 0.08%, 0.08%, 0.03% respectively. In
even the most extreme cases, the hypothesis that the observed warming is due to natural
variability may be rejected at confidence levels 1-p >99%, and with the most likely values, at

levels >99.9%. The other cases considered do not alter these conclusions (fig. 5).
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Fig. 5: The probability of anthropogenic warming by ATunen as functions of the
number of standard deviations for the five cases discussed in the text. Also shown for
reference is the equivalent temperature fluctuation using the mean standard deviation
at 125 years. The vertical sides of the boxes are defined by the one standard deviation
limits of ATanen /0, the horizontal sides by the gp =4 (upper) and gp = 6 (lower) limits;
the middle curve (gp = 5) is the mean (most likely) exponent. The classical statistical
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hypothesis (Gaussian, corresponding to g, =) is indicated for reference. The AR4

GCM based valuesATann =0.74 + 0.18 are indicated by the thick red line and using
logzpcoz as a surrogate for the RF followed by linear regression (ATann =0.85 * 0.08) is
shown in the filled red box. The other cases are shown by dashed blue lines: logzpco2
but with a 20 year lag, linear regression of Type against time and the upper bound on
ATanen = 1.04%0.03.

5. Conclusions
Two aspects of anthropogenic global warming are frequent sources of

frustration. The first is the lack of a quantitative theory of natural variability with
which to compare the observed warming ATunm, the second is the near exclusive
reliance on GCM’s to estimate it. In this paper we have argued that since = 1880,
anthropogenic warming has dominated the natural variability to such an extent that
straightforward empirical estimates of the total warming can be made. The one
favoured here - using CO2 Rr as a surrogate for all anthropogenic Rr - gives both
effective sensitivities Azxcozef and total anthropogenic increases ATanen (3.08+0.91 K and
0.87+0.15 K) comparable to the AR4 estimates (2 - 4.5 Kand 0.74+0.18 K). The method
was justified because we showed that over a wide range of scales, the residuals have
nearly the same statistics as the preindustrial multiproxies. An additional advantage of
this approach is that it is independent of many assumptions and uncertainties including
radiative transfer, GCM and emission histories. The main uncertainty is whether or not
to include a twenty year lag (included in the above estimates).

Whether one estimates ATann using the empirical method proposed here, or
using a GCM based alternative, when AT is combined with scaling properties of
multiproxies we may estimate the probabilities as functions of time scale and test the
hypothesis that the warming is due to natural variability. Our statistical hypothesis -

supported by the multiproxy data - is that due to the scaling - there are long range
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correlations in the temperature fluctuations coupled with nonclassical “fat tailed”
probability distributions which bracket the observed probabilities. Both effects lead to
significantly higher probabilities than would be expected from classical “scale bound”
(exponentially decorrelated) processes and/or with “thin” (e.g. Gaussian or
exponential) tails. However, even in the most extreme cases, we are still able to reject
the natural variability hypothesis with confidence levels >99% - and with the most
likely values - at levels >99.9%. Finally, fluctuation analysis shows that recent period
solar forcing was close to preindustrial levels (at all scales), and that volcanic forcings
were a factor 2-3 times weaker (at all scales), so that they cannot explain the warming
either. While no amount of statistics will ever prove that the warming is indeed

anthropogenic, it is nevertheless difficult to imagine an alternative.

Appendix A: Methods

A.1 Climate sensitivity

A2xcozeft is an “effective” sensitivity both because it uses CO; as a surrogate for
all the anthropogenic Rr, and also because it is not a usual “equilibrium climate sensitivity”
defined as “the equilibrium annual global mean temperature response to a doubling of
equivalent atmospheric CO; from pre-industrial levels” (AR4). Since only GCM’s can truly
attain “equilibrium” (and this only asymptotically in a slow power law manner [Lovejoy et
al., 2013)), this climate sensitivity is really a theoretical / model concept that can at best
only be approximated with real world data. Because of this difference in definition of
climate sensitivity, it would be an exaggeration to claim that we have empirically validated

the AR4 result, even though our value Axcozer = 3.08+0.91 (taking into account the
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uncertainty in the lag) is very close to the AR4 value 2 - 4.5K (which itself is close to the
AR1 — 3 value 3+1.5 K). It is not obvious whether effective or equilibrium sensitivities are
more relevant for predicting the temperature rise in the 21% century.
A.2 CO; as a linear surrogate for anthropogenic effects

All the key anthropogenic effects are functions of economic activity and CO; levels
are well measured and provide a convenient surrogate for the latter. Over the period 1880-
2004, pco: and logzp oz are linear to within £1.5% so that either pco2 or Rr.co2 could be used.
For example using data in [Myhre et al., 2001] Rz cuc and Ry coz are closely related and we

find: R, 5, =—0.190+0.019+(1.793 £ 0'027)RF,C02 with high correlation (rcozene = 0.945)

so that Rr o2 may be considered “enhanced” by the other GHG by = 79% (appendix fig. B9).
Although ozone, biomass and other effects contribute, the main additional contribution — and
uncertainty - in the total anthropogenic R a4 1s from the direct and indirect cooling effects
of aerosols, and is still under debate. Recent estimates (for both effects) are = -1.2 (AR4), -
1.0 W/m?, [Myhre, 2009] and = -0.6 W/m?, [Bauer and Menon, 2012] (all with large
uncertainties). Using the Mauna Loa estimate for pco, in 2012 (393.8 ppm,

http://co2now.org/), these estimates can be compared to = 1.9 W/m? for CO, and = 3.1

W/m? for all GHG (the above relation). However, sulfate production [Van Aardenne et al.,
2001] (a surrogate for aerosols) is roughly linear with Rgco> (over 1880-1990, we find » =
0.60), so that whatever its Ry effect — it is likely to also be roughly linear with Rz cp,. This
justifies the simple strategy adopted here of considering R co; to be a well measured linear
surrogate for Rpum; using the Rp.., data in [Myhre et al., 2001] we obtain

R, 4y =0.034£0.033+(0.645 £0.048) R, -, With rcozantn = 0.852. This assumes -1.5 W/m?

F .anth

for aerosol cooling; if the most recent cooling estimates are correct (-0.6 W/m?, i.e. they
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are diminished by 60%), then we obtain a proportionality constant # 1.25 rather than
0.645.
A.3 Scaling fluctuation analysis

The traditional way to characterize the variability over a wide range of scales is
spectral analysis. It is typically found that climate spectra are dominated by red noise
“backgrounds” and over wide ranges, these are roughly power laws (scaling) indicating that
over the range, there is no characteristic scale and (in general) that there are long range
statistical dependencies (e.g. correlations). However spectral analysis has disadvantages, the
most important of which is that its interpretation is not as straightforward as real-space
alternatives. This has lead to the development of wavelets and other methods of defining
fluctuations (e.g. Detrended Fluctuation Analysis [Peng et al., 1994]). However, [Lovejoy
and Schertzer, 2012b] shows that the simple expedient of defining fluctuations over
intervals At by the differences in the means over the first and second halves of the interval
(“Haar fluctuations”) is particularly advantageous since unlike differences - which on
(ensemble) average cannot decrease — Haar fluctuations can both increase and decrease with
this critical distinction corresponding to a spectral exponent of B= 1 (ignoring small
intermittency corrections). In regions where they increase they are proportional to
differences, in regions where they decrease, they are proportional to averages so that the
interpretation is very straightforward.
A.4 The probability of extreme fluctuations over 125 year intervals

To estimate the probability distribution of the extreme AT from the multiproxies, we

first use fluctuation analysis — this time directly on differences (i.e. AT = T(t+A¢) - 1(¢)) - to

172
estimate the typical RMS 125 year temperature difference (( AT (125 N =o ); see fig. 3.
yp 125
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Due to poor statistics at Az = 125 years there are large fluctuations, however, the use of
scaling hypothesis (linearity on the log-log plot) allows us to estimate the mean of 6,5 with
some confidence (see the reference lines). The uncertainty can also be estimated from the
variability of the G35 over the three epochs, we obtain G125 = 0.204+0.03 K.

Since the RMS fluctuations are roughly scaling we expect that the probability
distributions of AT for different Az will have a constant form. In addition, a generic result for
scaling processes is that they have power law, “fat” probability tails. This is investigated in
fig. 4 that shows the probability distribution of temperature differences AT for At increasing
by factors of 2 from 1 to 64 years. To obtain good statistics for the low probability, extreme
AT, all available At intervals were used. However, when At starts to approach the length of
the series (here 400 years), then this effectively oversamples the relatively few large At
fluctuations, and underestimates the extremes, hence we did not go beyond 64 years. From
the figure we see that the forms are indeed very similar and that they show clear evidence of
excesses with respect to the Gaussian (dashed lines); indeed the observed probability

excesses range from a factor 2.3 (Af =8) to 293 (At = 16), with mean factor of 63. Similarly,

fitting the extreme factor of 20 in probability to a power law (i.e. Pr(AT>s) = S'qD), yields ¢gp
=4.99+0.43. This is close to gp = 5 found in paleotemperature fluctuations at centennial and
at millennial scales [Lovejoy and Schertzer, 1986], and at monthly and annual scales
[Lovejoy and Schertzer, 2013b]. However, in order not to tie our conclusions to specific
assumptions about the form of the tails, in fig. 4 we compared the actual distributions with
those of Gaussians modified so that they smoothly asymptote to a power law with a given gp.
In the figure we therefore compare gp = 4, 6 and g, = o (a pure Gaussian); we see that the

former two values bracket the distributions (including their extremes) over the whole range
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of large fluctuations (the extreme =~ 3%). Note that a more theoretically justified form of
scaling probabilities is based on codimension functions[Schertzer and Lovejoy, 1987], but
these generally have the same types of extreme (power law) behaviours and are unnecessary

here.

Appendix B: Data
B.1 Instrumental data

We used globally, annually averaged temperature data over the period 1880 -
2008 from three sources: the NOAA NCDC (National Climatic Data Center) merged
land, air and sea surface temperature dataset (abbreviated NOAA NCDC below), on a
50x5¢ grid [Smith et al., 2008], the NASA GISS (Goddard Institute for Space Studies)
dataset [Hansen et al., 2010] (from 1880 on a 2°x 2 °) and the HadCRUT3 dataset
[Rayner et al., 2006] (on a 5°x5° grid). HadCRUT3 is a merged product created out of
the HadSST2 Sea Surface Temperature (SST) dataset and its companion dataset of
atmospheric temperatures over land, CRUTEM3 [Brohan et al., 2006]. Both the NOAA

NCDC and the NASA GISS data were taken from http://www.esrl. noaa.gov/psd/; the

others from http://www.cru.uea. ac.uk/cru/data/temperature/. The NOAA NCDC and

NASA GISS are both heavily based on the Global Historical Climatology Network
[Peterson and Vose, 1997], and have many similarities including the use of
sophisticated statistical methods to smooth and reduce noise. In contrast, the
HadCRUT3 data are less processed, with corresponding advantages and disadvantages.
Haar analysis of the space-time densities of the HadCRUT3 measurements shows that
they are sparse in both space and time with fractal codimensions of = 0.25, 0.2

respectively [Lovejoy and Schertzer, 2013b]. This strong sparseness means that we

16



should not be surprised that the resulting global series are somewhat dependent on the

assumptions about missing data.

B.2 Multiproxy data

Following the analysis in [Lovejoy and Schertzer, 2012c], the more recent (post
2003) multiproxies were argued to be more faithful to the low frequency
(multicentennial) variability. In particular, the low frequencies in [Huang, 2004],
[Moberg et al., 2005] and [Ljundqvist, 2010] were found to be more realistic when
compared to ice core paleotemperatures with fluctuations starting to increase in
amplitude for At *>30 - 50 years (see fig. B1). However, one of these series (ref.
[Ljundqvist, 2010]) was at 10 year resolution and was not suited for the present study
which required annual series. It was therefore replaced by the Ammann et al
seriesfAmmann et al., 2007] which although having somewhat smaller multicentennial

variability was statistically not too different (see e.g. fig. B7).

B.3 Solar and volcanic reconstructions

In [Lovejoy and Schertzer, 2012a), a scaling fluctuation analysis was used to
show that the two volcanic forcing reconstructions [Crowley, 2000], [Gao et al., 2008]
had fluctuations rapidly decreasing with scale At and differing from each other mainly
by a constant factor. It was therefore unlikely that they could account for
multicentennial, multimillenial temperature fluctuations which increase with scale.
Similarly, analysis of solar reconstructions found that they divided into two categories:

the sunspot based reconstructions[Lean, 2000], [Wang et al., 2005], [Krivova et al.,
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2007] and the 1%Be based reconstructions, [Steinhilber et al., 2009], [Shapiro et al.,
2011] with the former having rapidly increasing fluctuations, and the latter, rapidly
decreasing fluctuations. Within each group, the differences were mainly of amplitude
(a constant factor). For the same reasons as the volcanic forcings are likely to be
irrelevant at centennial and longer scales, if correct, the 1°Be reconstructions would
imply that solar forcings at these and longer scales are also irrelevant. Therefore, to
judge possible changes in these forcings in the recent period, we only considered the
more relevant sunspot based solar reconstructions, and this, only for the more reliable
most recent two (fig. B3). We see that although they disagree with each other, there is
practically no change at any scale when the recent epoch is compared to pre 1900
forcings so that we conclude that solar variability is statistically of the same type
(stationary) over the relevant time periods. For the volcanic forcings, the recent epoch
is consistently found to have weaker fluctuations at all scales, and this by a factor 2 -3

(fig. B3).

B.4 The emissions

The CO2 emission data were taken from both Mauna Lao and South Pole stations
(since 1959; used in fig. B5) and for the 1880-2004 CO: reconstruction, from [Frank et
al., 2010]. The long lived Greenhouse Gas (GHG) reconstruction as well as the total
anthropogenic reconstruction (1880-1995) in fig. B9 were from [Myhre et al., 2001]
As indicted in the text (Methods), the main uncertainty in the latter is due to the role of

aerosols. However, even if their contribution is diminished by a large fraction (perhaps
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as much as 60% see the text), as long as this fraction is roughly constant over time,

Rrcoz will remain a good surrogate for Rranth.
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Fig. B1: This shows the RMS Haar fluctuations for the GISS-ER2 Last Millenium
simulations for the period 1000-1900, annually averaged temperatures over land in the
northern hemisphere. The control run shows the slow power law convergence (x At
02) of the unforced model to its asymptotic climate state. The solar curve shows that
putting solar forcings from reconstructed solar activity leads to similar low variability
results. The two volcanic curves use different volcanic reconstructions [Gao et al.,
2008]. All of these are compared with the mean of three multiproxy reconstructions
over the period 1500-1900 ([Huang, 2004) [Moberg et al., 2005} [Ljundqvist, 2010]).
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Fig. B2: This is the same as previous except for the period 1880-2005 (dashed) and
compared to the mean RMS fluctuations from three surface series discussed above,
1880-2008. Also shown are the same (pre 1900) multiproxies as in fig. B1. The
simulations are for land only in the northern hemisphere whereas the surface data are

global (including oceans). This difference presumably accounts for their slightly lower
variability.
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Fig. B3: The RMS radiative forcing fluctuations for the two volcanic series used in fig.
B1, B2 (since 1500 [Crowley, 2000], [Gao et al., 2008]) as well as the same from
sunspot based solar reconstructions [Wang et al., 2005], [Krivova et al., 2007] (from
1610). The full lines are for the period up to 1900, the dashed lines for the period since
1880. One can see that the solar fluctuations are of nearly the same amplitude at all
scales. In contrast, the volcanic forcings have decreased by a factor 2-3 in the recent
period. For a more complete analysis of the fluctuations over the whole period, see
[Lovejoy and Schertzer, 2012a].
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Fig. B4: The red curve is the 10x the cross correlation of the lagged Rrcoz (from the CO>
reconstruction of [Frank et al., 2010]) and the global mean temperatures (averaged at
5 year resolution) with dashed lines indicating one standard deviation variations (as
estimated from the three global mean temperature series), the curves were given a 1-2-
1 smoother to bring out the overall variations. We can see that lags between zero and
lag 20 years give nearly the same cross-correlation. However, the effective climate
sensitivity to doubling CO2 (purple) increases from 2.33+0.22 (zero lag) to 3.82+0.54
with a 20 year lag.
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Fig. B5: This figure shows the cross correlation of logzpcoz and Tgipe (at 5 year
resolution) for periods 1880-1959 and 1959-2004. In the recent period along with the
Pcoz reconstruction we use pcoz data (averaged from Mauna Loa and the South pole
station). We see that there is agreement that for the recent period, the cross-

correlation decreases after zero lag.
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Fig. B6: This figure shows the top part of fig. 3 (but without the upward shift) and adds
the RMS fluctuations for the 20 year lagged logzpcoz residuals (dotted, black) lines as
well as the residuals of the linear temperature versus time regression (dot-dashed,
black). Recall that the pink is the surface data 1880-2004 and the green are the
multiproxies: thick green is the mean over 1500-1900, the dashed green are one
standard deviation limits for the three 125 year epochs (1500-1624, 1625-1749, 1750-
1874). Both the lagged and unlagged logzpcoz residuals are generally within the one
standard deviation limits, although the 20 year lagged residuals are closer to the mean.
The residuals of the Tyiope versus time regression are generally outside the one standard
deviation limits for At~>10 years.
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Fig. B7: The temperature differences for At = 1 year for the three multiproxies (red,
1500-1900) compared with the (unlagged) residuals from fig. 1. The smooth curves are
the Gaussians with the same standard deviations. We see that the multiproxies are
quite close to each other - although with some small variations in amplitude - about
10% between each curve - but not much in shape. At this scale the residuals have
slightly larger variability, although after At = 10 - 20 years (see fig. 3), it falls within the
epoch to epoch variations of the mean of the multiproxies.
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Fig. B8: The comparison of the mean global temperature series (red), one standard
deviation limits (dashed, all from the three surface series discussed above), compared
the regression of the latter with time (straight line) as well the overall estimates ATan¢n

with the unlagged (brown, corresponding to fig. 1) and 20 year lagged (blue) estimates
obtained from logz2pcoz versus Tgone regressions as discussed in the text. Also shown in

which presumably

0.85 for the unlagged relation and the overall range ATjiobe range

bounds ATaneh.
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Fig. B9: Over the period 1880-1995, the relationship between the radiative forcing of
CO2 (RF, coz ), the radiative forcing of all the long lived Greenhouse Gases (including
CO2: Rr,cue) and the total radiative forcing of all the anthropogenic emission including
aerosols; data from [Myhre et al., 2001]. The regression lines have equations
Ry gy =—0.190£0.019 +(1.793 £ 0.027)RF‘C02 and

R =0.034£0.033+(0.645+ O.O48)RF’CO2 .
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