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Abstract 

We evaluate three categories of variables for explaining the spatial pattern of warming and cooling 
trends over land: predictions of general circulation models (GCMs) in response to observed 
forcings; geographical factors like latitude and pressure; and socioeconomic influences on the land 
surface and data quality. Spatial autocorrelation (SAC) in the observed trend pattern is removed 
from the residuals by a well-specified explanatory model. Encompassing tests show that none of the 
three classes of variables account for the contributions of the other two, though 20 of 22 GCMs 
individually contribute either no significant explanatory power or yield a trend pattern negatively 
correlated with observations. Non-nested testing rejects the null hypothesis that socioeconomic 
variables have no explanatory power. We apply a Bayesian Model Averaging (BMA) method to 
search over all possible linear combinations of explanatory variables and generate posterior 
coefficient distributions robust to model selection. These results, confirmed by classical 
encompassing tests, indicate that the geographical variables plus three of the 22 GCMs and three 
socioeconomic variables provide all the explanatory power in the data set. We conclude that the 
most valid model of the  spatial pattern of trends in land surface temperature records over 1979-
2002 requires a combination of the processes represented in some GCMs and certain 
socioeconomic measures that capture data quality variations and changes to the land surface. 

 
Key Words: GCM testing; spatial trend patterns; climate data contamination, spatial 
autocorrelation; non-nested tests; encompassing tests; Bayesian Model Averaging. 
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EVALUATING EXPLANATORY MODELS OF THE SPATIAL PATTERN 

OF SURFACE CLIMATE TRENDS USING MODEL SELECTION AND 

BAYESIAN AVERAGING METHODS 

 

 

1 INTRODUCTION 

1.1 MODEL TESTING IN SPATIAL AND TEMPORAL DIMENSIONS 
General Circulation Models (GCMs) are the basis for modern studies of the effects of greenhouse 

gases and projections of future global warming. Reliable trend projections at the regional level are 

essential for policy guidance, yet formal statistical testing of the ability of GCMs to simulate the 

spatial pattern of climatic trends has been very limited. This paper applies classical regression and 

Bayesian Model Averaging methods to test this aspect of GCM performance against rival 

explanatory variables that do not contain any GCM-generated information and can therefore serve 

as a benchmark.  

In 20th century reproduction tests, the GCM takes as inputs the observed post-1900 changes in 

greenhouse gases, aerosols, solar output and so forth, and generates a predicted sequence of 

temperatures throughout the atmosphere. GCMs have mainly been tested on their ability to explain 

a univariate global or regional average temperature anomaly series (herein Tt) over the post-1900 

interval (e.g. Knutson et al. 2006, CCSP 2008). But this does not appear to be all that informative as 

to the overall power of the model. Kaufmann and Stern (2004) analysed Tt using an error-

correction model containing a GCM-generated prediction of Tt as well as a small number of GCM 

inputs, namely observations on greenhouse gas concentrations, solar irradiance, volcanic dust and 

atmospheric aerosols, rescaled to represent forcing units on temperature change processes. They 
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could not reject the hypothesis that the GCM added no information to the forecast of Tt other than 

that inherited from the observed forcing series.  

In addition, conflicting hypotheses can explain the 20th century evolution of Tt. Shukla et al. 

(2006) showed that models with greater propensity to warm in response to greenhouse gases 

tended to fit a globally-averaged temperature trend better, but Knutti (2008), CCSP (2008, p. 44), 

Knutti and Hegerl (2008), Kiehl (2007), Hegerl et al. (2007 p. 678), Schwartz et al. (2007) and 

others have all noted that the observed global trend can be consistent with stronger or weaker 

sensitivity to greenhouse gas-induced warming if paired with offsetting assumptions about aerosol-

induced cooling, oceanic heat uptake or other mechanisms.  

The evaluation of climate models in Chapter 8 of the Fourth Intergovernmental Panel on Climate 

Change (IPCC) report (Randall et al. 2007) primarily consists of static reproduction tests, that is, the 

ability to reproduce the distribution of mean temperature and precipitation levels, and diurnal 

temperature ranges, but not temperature trends, around the world; and a priori process checks, 

that is, whether certain known meteorological processes are coded into the models. The IPCC 

report notes (p. 594) that relatively few studies have looked at whether empirical fidelity between 

model simulations of historical periods and observations improves the accuracy of climate trend 

forecasts. Gleckler et al. (2008) note that the ability of a climate model to replicate a mean climate 

state has little correlation to measured fidelity on interannual trend measures, a point shown 

clearly in Jun et al. (2008).  

GCMs differ in their handling of physical processes, parameterization of subgrid scale processes 

and assumptions about poorly-observed forcing effects, such as aerosols. The range of 

methodologies implies that they cannot all be “correct.” Knutti (2008) points out that testing 

fidelity on both the spatial and temporal scales is essential, yet Berk et al. (2001) noted that 
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quantitative comparison of model outputs to observed data was rare and “relies very heavily on 

eyeball assessments” (Berk et al p. 126). Neither the Climate Change Science Program review of 

GCMs (CCSP 2008) nor the 2007 IPCC report provided quantitative tests of how well climate 

models reproduce the spatial pattern of temperature trends in recent decades, relying instead on 

“eyeball assessments.” Chapter 9 of the IPCC report (Hegerl et al. 2007) presents a diagram and 

accompanying discussion (Figure 9.6, pp. 684-686) of the averaged output from 58 GCM runs and 

the spatial pattern of temperature trends over land from 1979-2005, comparing model runs under 

the assumption that greenhouse gases do not warm the climate versus runs that assume they do. It 

is asserted that the latter assumption fits the data better, but no quantitative evidence is provided. 

CCSP (2008) presents a visual comparison of the fit between observed trend patterns over 1979-

2003 and those generated by the GISS ModelE. Again the discussion is entirely qualitative—readers 

are not even given a correlation coefficient, much less a suite of significance tests.  

CCSP (2008), referring to Covey et al. (2003), reports a 95-98% correlation between modeled 

and observed temperatures over space and time. These were ahistorical, no-forcing control runs, 

not a test of predictive capability. Instead Covey et al. compared the 12 monthly means from GCM 

control runs on a gridcell-by-gridcell basis to late 20th century monthly temperature means. The 

models did a good job reproducing the spatial pattern of the mean across grid cells, the amplitude 

of the seasonal cycle within each grid cell and the different seasonal amplitudes across grid cells. 

However the ability to predict trends in the gridded monthly or annual means over time in 

response to observed forcing changes was not tested.  

Knutson et al. (2006) present a comparison of the spatial trend pattern between an ensemble 

average of model simulations for 1949—2000 and corresponding observations. In their Figure 5d 

(p. 1635) the differences are denoted as significant or not based on a t-test. They report that in 31% 



 5 

of the locations, the t-statistic rejects the hypothesis that the modeled and observed trends are the 

same. However, failure to reject differences elsewhere does not imply much about actual 

explanatory power. Consider for example, a test for differences among two lists of Gaussian random 

numbers: failure to reject would not imply that one explains the other. Model evaluation against a 

specific alternative is more useful for assessing explanatory power, as we will discuss in the next 

section. Jun et al. (2008, Figure 7) contrast observed and model trends but the significance of the 

mismatches is not reported. 

1.2 TESTING FRAMEWORK 
The vector we seek to explain, denoted  , contains i = 1,…,428 trend terms    representing the 

least squares trends through the monthly temperature anomaly data series in the 428 available grid 

cells i in the land surface data set produced by the Climatic Research Unit (CRU, see Brohan et al. 

2006). The data set is commonly denoted CRUTEM3v which we will shorten to CRU3v herein. 

Trends are computed over 1979-2002, an interval which was dictated by the availability of some 

key data (see section 2.1). There are three categories of explanatory variables. Fixed geographic 

observations (such as latitude and mean air pressure) are denoted by the matrix G. Measures of 

regional socioeconomic development (such as Gross Domestic Product (GDP) and population 

growth) that can be conjectured to induce climatic effects through local changes to the land surface 

are herein denoted by the matrix X. A vector of surface temperature trends projected by GCM j is 

denoted    and the collection of these vectors is the matrix Z. We are concerned herein with 

understanding the extent to which the individual   ’s, and all the possible linear combinations 

thereof up to the entire matrix Z, can explain y, in comparison to the elements of X, in tests in which 

the explanatory power of G are also taken into account. 
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We address three issues that arise in such testing. First, spatial autocorrelation is shown to affect 

the dependent variable but not the residuals of the fully-specified testing model, allowing use of 

familiar least-squares estimation. Second, while standard tests of zero restrictions allow rejection 

of nested alternatives, they do not help choose when rival models are considered mutually 

exclusive. To conduct more generalized tests among alternatives we use encompassing (Mizon 

1984) and non-nested tests (Davidson and MacKinnon 1981, 2004). Third, we recognize that GCMs 

might have optimal performance only in unknown linear combinations, and selection of rival 

variables likewise may be arbitrary, so we apply a Bayesian Model Averaging (BMA) method that 

searches over all possible linear combinations of explanatory variables and generates posterior 

coefficient distributions robust to model uncertainty.   

The matrix of geographic factors G includes presence of a major coastline, mean air pressure, 

latitude, and measures of the local influence of major climatic cycles such as El Nino and the Pacific 

Decadal Oscillation. The matrix of socioeconomic data X includes measures of population growth, 

income growth, energy consumption and other variables known to affect local air temperature 

trends and data quality. Note that the effects of these variables are supposed to have been removed 

during the data set construction process, an issue that we discuss in detail below. The matrix Z of 

GCM terms   
 
, sometimes called the “guess pattern” (e.g. Hegerl et al. 1997) represents the 

prediction by climate model j of the i-th gridcell temperature trend over the same period in 

response to observed changes in the main climate forcing input series, chiefly greenhouse gases, 

solar irradiance, atmospheric aerosols and (in some cases) ozone depletion. Note that the GCM 

takes as inputs the observed changes in greenhouse gases, solar flux and other global climatic 

influences over a target time interval, then generates as outputs the projected pattern of warming 

and cooling trends in each location, which can be compared to the observed trends. Because we are 
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analysing a spatial pattern of trend coefficients this is a cross-sectional, rather than a time-series, 

test.  

Interest in the role of socioeconomic variables arises because of findings in de Laat and Maurellis 

(2004, 2006), McKitrick and Michaels (2004, 2007, herein MM07), and McKitrick and Nierenberg 

(2010), all of whom modeled the surface trend patterns in the data of Brohan et al. (2006) and 

similar data products, to test the null hypothesis of independence from measures of local 

socioeconomic development, such as population growth, urbanization, equipment changes, data 

quality problems in developing countries, variations in local air pollution levels, etc. The belief that 

these factors have been removed from climatic data is widely assumed and is integral to climatic 

research (see., e.g., Yun et. al. 2008, p. 935). MM07 regressed the observed 1979-2002 trends in 

surface grid cells on the same set of fixed geographical variables as are employed herein. They 

strongly rejected the independence of the surface temperature trends and socioeconomic variables, 

concluding that the climatic data are contaminated by the effects of industrialization on local 

temperature records. Schmidt (2009, herein S09) critiqued this interpretation on the grounds that 

a GCM with no representation of socioeconomic surface processes could generate a spatial pattern 

of trends that is also apparently correlated with socioeconomic measures. McKitrick and 

Nierenberg (2010) replied that, on average, GCMs predict a spatial pattern of correlations between 

temperature trends and socioeconomic variables opposite to the one observed in CRU data, and 

also that the regression model using GCM output exhibited spatial autocorrelation in the residuals 

which, if corrected, rendered the apparent correlations insignificant.  

McKitrick and Nierenberg (2010) included GCMs in rather simplistic ways, as the mean of 

individual runs by the GISS-E model (Schmidt 2009) and as the mean of runs from 22 climate 

models used for IPCC (2007). The limitation of this approach as a test of climate model accuracy is 
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that it requires arbitrary selection of the regressors, hence model uncertainty (in other words 

uncertainty over which variables to include in the model) is not taken into account. For instance, 

while one GCM might have weak explanatory power on its own, it may also lack a physical process 

(such as ozone depletion) covered by another model, so that a linear combination of the two models 

might perform well. In the same way it might or might not be appropriate to include linear 

combinations of the other variables. A priori theory is not decisive on this point, and arbitrary 

inclusion or exclusion can lead to contrasting risks of overfitting and omitted variable bias.  

After introducing the data and methods in the next section we illustrate the model selection 

problem using nested and non-nested hypothesis tests of rival models of surface trends. While 

some GCMs clearly demonstrate significant explanatory power, these results are always conditional 

on model selection decisions, a limitation we then tackle using BMA to obtain confidence intervals 

and inclusion probabilities robust to model uncertainty. We show in section 3.4 that the results of 

the BMA analysis align well with those from classical methods in identifying a subset of climate 

models and socioeconomic variables necessary to yield a good model of the spatial pattern of 

temperature trends over land. 

2 DATA AND METHODS 

2.1 DATA SET 
All data are taken from McKitrick and Nierenberg (2010) and McKitrick (2010). The data consist 

of 428 records, one for every 5x5 degree grid cell over land for which adequate observations were 

available in CRU3v to identify a trend over the 1979-2002 interval. The locations are plotted in 

Figure 1. The time interval was determined by the start of the satellite record (1979) and the 

terminus of the most recently available socioeconomic data during the preparation of McKitrick and 

Michaels (2007). Future work on this topic will involve use of the additional decade of data now 
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available at each location.  Each record contains the linear surface trend    expressed as degrees C 

per decade, supplemented with the variables listed in Tables 1 and 2, which were drawn from a 

variety of sources (see Appendix for source information and other details). Since we are analyzing 

the pattern of trends over space, temporal autocorrelation within gridcells does not need to be 

addressed. We do not make use of the variance of the trend terms, just the least squares trends 

themselves. If we were to estimate a model on the pooled cross-sectional time series panel data set, 

then we would need to address the temporal autocorrelation problem. Panel estimators and non-

parametric variance estimators for climatic data sets are discussed in McKitrick et al. (2010). In 

future work the analysis of spatial performance of climate models will be examined in a pooled 

cross-sectional time series framework, but for now the temporal data are collapsed into trend 

terms so our data set is cross-sectional.  

      is the lower troposphere (LT) temperature trend in gridcell i taken as the mean of the UAH 

(Spencer and Christy 1990) and RSS (Mears et al. 2003) data products.       is the mean sea level air 

pressure.      is a dummy variable denoting when a grid cell is characterized by predominantly dry 

conditions (which is indicated by the mean dewpoint being below 0 oC).       is           . wateri 

is a dummy variable indicating the grid cell contains a major coastline. abslati denotes the absolute 

latitude of the grid cell. aoi, naoi, pdoi and soii denote, respectively, the correlation over time in grid 

cell i between the grid cell temperature anomaly and a standard index of the Arctic Oscillation, the 

North Atlantic Oscillation, the Pacific Decadal Oscillation and the El Nino-Southern Oscillation 

Index.   ,  ,    and    are, respectively, percent changes over 1979 to 2002 in population, real per 

capita income, total Gross Domestic Product (GDP) and coal consumption.     is GDP density 

(national Gross Domestic Product per square kilometer) as of 1979,     is the average level of 

educational attainment as late in the interval as possible, and    is the number of missing months in 
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the observed temperature series.   
 
denotes the 1979-2002 surface trends projected by model j, 

where j = 1,…,22, the number of available models in the PCMDI archive (see Appendix).  

2.2 MODEL EVALUATION METHODS 
A simple test of the explanatory power of GCM j would involve estimating the regression 

        
    (1) 

where e is a vector of independent and identically distributed residuals. Rejection of  ̂    would 

imply significant explanatory power for model j. The sign restriction is imposed since a significant 

estimate   ̂     is not a validation of the GCM, but an extreme form of model failure. If no 

alternative is specified the test may not tell us much. Suppose that a fixed, exogenous factor like 

latitude were added to Equation (1). If    ̂  fell to insignificance we would then conclude that the 

apparent explanatory power attributed to the GCM was due to it serving as a (rather expensive) 

proxy for latitude. So tests must control for plausible alternatives, namely a list of those variables 

for which the GCM is expected to provide explanatory power “over and above.” If the GCM contains 

scientifically valid climatic information it ought to provide explanatory power over and above 

latitude, as well as other geographic and socioeconomic variables that might be considered.  

Since there are 22 models in our sample, testing at 5% significance leaves open the possibility 

that even if all of them were devoid of explanatory power, nonetheless one might appear to achieve 

significance by chance. However most of our key results are obtained at very low significance levels 

so we are not overly concerned about Type I errors.    

Identification of the contribution of GCMs relative to an alternative can be done using 

conventional nested regressions, as well as encompassing tests and non-nested tests. A nested test 

of explanatory power can take the form of the regression  
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             . (2) 

 

where G is augmented with a column of 1s. The conventional F-statistic on the restrictions   ̂     

will test whether the GCM data contribute significant explanatory power over and above that 

contributed by G and X. The concept of encompassing (Mizon 1984) provides a deeper 

interpretation of the results of such a test. Ignoring the role of G for a moment, suppose there are 

two rival models M1 and M2: 

            . (3a) 

            . (3b) 

M1 carries the strong implication that the elements of X have no explanatory power, and in the 

current context can be viewed as the maintained hypothesis that non-climatic factors relating to 

surface disruption have been removed from observed climatic data y; likewise M2 implies that Z 

has no explanatory power. Below we also consider a non-nested approach that offers less extreme 

contrast by forming a weighted pair of equations (3a) and (3b), but for now we consider the case in 

which a researcher wants to consider mutually exclusive alternatives.  

Under the null hypothesis that (3a) is true, the ordinary least squares (OLS) estimator  ̂ 

converges to the true value   as the sample size grows. The principle of encompassing states that if 

equation (3a) is the true model, it ought to explain y in terms of Z, but should also explain the 

behavior of   ̂ in M2. Thus when we say that one model encompasses another, it not only provides 

explanatory power for the dependent variable but also accounts for any apparent explanatory 



 12 

power of the rival model. OLS Estimation of model (3b) yields  ̂  (   )     . If equation (3a) is 

true then the limiting behavior of  ̂ can be explained using (   )      . Substituting in  ̂ we obtain  

    ̃  (   )     (   )      (   )        

where PZ denotes the OLS projection matrix and PZ y is therefore the vector of fitted values from a 

regression of y on Z. If the differences between the estimators ( ̂   ̃) are small (that is, have a 

probability limit of zero), then M1 is said to encompass M2. The relationship between the two 

models is quite simple, so in this case, though not generally, the encompassing test turns out to be 

equivalent to the F test on   ̂    from the regression 

           

(Davidson and MacKinnon 2004, p. 672). Now suppose each model is augmented with   , yielding 

models M3 and M4:  

                (4a) 

 M4:           . (4b) 

Then the F test on   ̂    from equation (2) tests whether the explanatory variables unique to M4, 

namely the columns of X, are encompassed by M3. Likewise the F test on  ̂    from equation (2) 

would test whether M3 is encompassed by M4. In the implementation in Section 3 we introduce 

each GCM separately as well as collectively in Z.  

The encompassing approach helps clear up an ambiguity that can arise due to the possible 

relationship between Z and G. Suppose the GCMs predict that the response to increased greenhouse 

gases is a spatial warming pattern exactly stratified by some or all of the elements of G, such as 
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latitude and proximity to a coastline, and the variables in X have no explanatory power. Then any 

apparent explanatory power of G might equally be interpretable as evidence for the models that 

generated the predictions in Z, and likewise an observation of insignificance of  ̂ might be 

attributed to multicollinearity with G, rather than lack of explanatory power of the models. We can 

resolve this ambiguity by testing if M1 encompasses M4, or in other words whether any 

explanatory power of G and X together is attributable to Z. This can be done using the F test on 

whether  ̂ and   ̂ from equation (2) are jointly zero.  

A related approach that does not involve either-or comparisons is called non-nested testing 

(Davidson and MacKinnon 2004). It involves taking equations (4a-b) and forming the weighted pair 

    (   )(     )   (     )   . (5) 

If equation (5) could be estimated directly a test of   ̂    would indicate if the GCM’s have full 

explanatory power while the socioeconomic variables have none, and likewise a test of  ̂    would 

test if the socioeconomic variables have complete explanatory power. However   is not identifiable 

in equation (5). Davidson and MacKinnon (1981) showed that if (     ) in (5) is replaced with 

the predicted values from a regression of y on G and Z (denoted  ̂  ) then estimation of  

            ̂     (6) 

yields an estimate  ̂  corresponding to   from equation (5), the t-statistic for which is 

asymptotically N(0,1) under the null hypothesis that    . This is called the Davidson-MacKinnon 

J-test. It is customary to do the test twice, switching the   positions to double check the result. Our 

interest is in whether the confidence interval around   includes 0 or 1, so we report tests of each 

null.  
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2.3 SPATIAL AUTOCORRELATION 
Estimation of models in the form of (1) yield residuals with strongly autocorrelated 

disturbances. Spatial autocorrelation in the residual vector can be modeled using 

         (7) 

Where   is the autocorrelation coefficient, W is a symmetric matrix of weights that measure the 

influence of each location on the other, and e is a vector of homoskedastic Gaussian disturbances, 

(Pisati 2001). The rows of W are standardized to sum to one. A test of          measures whether 

the error term is spatially independent. Anselin et al. (1996) point out that if the alternative model 

allows for possible spatial dependence of y then conventional tests of     will be biased towards 

over-rejection of the null. Anselin et al. (1996) derive an LM test of     robust to nonzero value of 

a nuisance parameter measuring the spatial lag, and that is the form of test we use herein. 

Hypothesis tests, and any subsequent parameter estimations, are conditional on the assumed form 

of the spatial weights matrix W in equation (7). We use elements 

ij
u  denoting the great circle 

distance between grid cells i and j where   determines the rate at which the relative influence of 

one cell on adjacent cells declines. Based on the maximum likelihood results in McKitrick and 

Nierenberg (2010) we used  =2.3. Our tests (not reported) on regressions of the form (2) using 

individual GCM terms as well as the full matrix Z show that while the dependent variable is spatially 

autocorrelated the residuals are not, so in our estimations we do not need to apply the correction in 

equation (7). 

 

2.4 BAYESIAN MODEL AVERAGING  
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Specification of the GCM component and the rival variables can be arbitrary due to the lack of 

theoretical guidance as to the correct model. For instance, there are 22 GCMs, but as mentioned 

above, the best choice may not be one particular model, but a linear combination. Since there are 

222 such combinations, it is computationally infeasible to test each one. Likewise, there are 16 

geographical and socioeconomic variables, and cases can be made for or against inclusion of each 

one. Estimation of any one regression model entails a choice among a large number of potential 

alternatives, and this uncertainty needs to be accounted for in the variances of the coefficient 

estimates. Model averaging surmounts this problem by including information from every potential 

model. Results are a weighted average of estimates from every model, where the weights are 

proportional to the support each model gets from the data. Since it treats models (and parameters) 

as random variables, it is easier to implement model averaging in a Bayesian framework.  

In this study, we implement Bayesian model averaging as outlined in Fernandez, Ley and Steel 

(2001) and we use an algorithm referred to as Markov chain Monte Carlo model composition (MC³). 

Intuitively, this method involves randomly drawing models in a way that a given model is drawn 

with frequency proportional to  (       ). The algorithm focuses on the models with high 

probability, which receive high weight in the model averaging procedure, while avoiding those with 

low probability. See also Hoeting et al (1999) for more details. The dependent variable in each case 

is  y and contains N observations. k is the total number of potential explanatory variables and these 

are stacked in a     variable matrix V. We have r=1,..,R models, denoted by   . These are all 

Normal linear regression models which differ in their explanatory variables, 

              (8) 
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where     is an N1 vector of ones, Vr is an Nkr matrix containing some (or all) of the potential 

explanatory variables (i.e. the columns of G, X, and Z) and    is a kr1 vector of coefficients on these 

explanatory variables.  The N-vector of errors, e, is assumed to be   (       ) where 0N is an N-

vector of zeros and IN is the NN identity matrix. Note that we are assuming all models contain an 

intercept  . 

We define the models by the choice of explanatory variables (i.e. by the choice of Vr). BMA 

assumes different models are defined by the inclusion or exclusion of each variable. This leads to 2k 

models. If k is at all large, the enormous number of potential models to be estimated imposes huge 

demands on computation. These computational demands motivate our choice of the Normal linear 

regression model. 

We use a Normal-Gamma natural conjugate prior with hyperparameters chosen in the objective 

fashion described in Fernandez, Ley and Steel (2001). Specifically, our error variance uses the 

standard noninformative prior: 

  ( )     . (9) 

We centre all the explanatory variables by subtracting off their means. As a consequence, we use a 

flat prior ( ( )   )  for the intercept. For the slope coefficients we assume a g-prior of the form: 

     (     [    
   

 ]  ) (10) 

where gr is a scalar. Following Fernandez, Ley and Steel (2001), who relate these choices to 

common information criteria, we choose 

    {

 

         

 

 
        

. (11) 
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The resulting posterior for r follows a multivariate t-distribution with mean: 

  (          )  [(    )  
   

 ]       (12) 

covariance matrix: 

    (          )  
  ̅ 

   
[(    )  

   
 ] (13) 

where  

  ̅  (      )    (   ̅  ) (   ̅  ) ( (    )) (14) 

where          ( 
 
   )

     . The posterior model probabilities are given by: 

  (       )   (
  

    
)

  
 (   ̅ ) (   )   (15) 

where c is a constant common to all models. Equation (15) is related to familiar information criteria 

since the Schwartz Information Criterion is an approximation to its logarithm. If desired, the fact 

that ∑  (       ) 
       can be used to evaluate c.  

If the number of models, R, is relatively small, these equations can be evaluated for every 

possible model and BMA or model selection can be implemented directly. In traditional applications 

of BMA, R=2k and where k>20 direct implementation of BMA is computationally infeasible. 

Accordingly, we adopt the MC3 algorithm described in Madigan and York (1995). This is a 

Metropolis algorithm which is very simple to implement. In particular, if the current model in the 

chain is Ms then a candidate model, Mj, which is randomly (with equal probability) selected from the 

set of models including Ms and all models containing one more or one less explanatory variable (i.e. 
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the algorithm randomly either adds or subtract one column from Vs), is drawn. Mj is accepted with 

probability: 

    {  
 (  |    )

 (       )
} (16) 

We monitor convergence of the chain by calculating the probability of the ten most probable 

models drawn in two different ways. First, we calculate them analytically using the equation above. 

Then we approximate this probability using output from the MC3 algorithm. When these 

probabilities (computed using equation 15) are the same to two decimal places, we deem 

convergence to have taken place. The number of draws required for the various models considered 

varied from 1,000,000 to 2,000,000. 

 

3 3. RESULTS 

3.1 GCM SELECTION 
All computations herein were done using Stata version 12.0 except for the BMA analysis which 

was done using Matlab. Data and code are available in the online supplement. All linear regressions 

controlled for heteroskedasticity and clustered errors.  

The first step was to estimate equations (1) and (2), examining one GCM at a time, to assess if 

the model-predicted spatial trend pattern   
 
 is anticorrelated with the data or not. Table 3 shows 

the results. The first column lists the model number. The second column shows the estimate of    

from equation (1) and the third column shows the same term when the regression is augmented 

with G and X. The fourth column indicates whether the model will be kept (1) or not (0) in 

subsequent analysis, based on the requirement that    is non-negative in both columns. The final 
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column indicates the p value on   from the multivariate regression used for the third column. On 

this criterion 12 of 22 models are retained, while the other 10 are found not to reliably yield a 

positive correlation with the observed data and so were discarded. Conditional on having a positive 

coefficient, five of 11 models are significant at 10%, and two (models 11 and 19) are significant at 

5%, indicating that they contributed significant explanatory power in the presence of the rival 

explanatory variables.  

3.2 NESTED AND ENCOMPASSING TESTS 
The results in Table 4 are all based on regressions in the form of equation (2). The first column 

either indicates the model number, for a case in which it is included individually, or “all” denoting 

that all models retained as per Table 3 were included jointly. The next six columns present three 

pairs of F statistics and associated p values. The first pair refers to the joint test of the coefficients in 

 , the second pair refers to the joint tests of the coefficients in   and the third pair refers to the joint 

tests of the coefficients in  . The last two columns present F statistics and associated p values for a 

test that model M1 encompasses M4. 

The first row reports on result of an estimation in which only the retained columns of Z are 

included and  ̂    is (jointly) tested. The second row reports on a result in which Z and G are 

included and the tests are   ̂    and   ̂   . The third row reports on a result in which Z and X are 

included and the tests are   ̂    and   ̂   . The fourth row presents the results when all the 

retained columns of Z are included along with X and G. In each case the tests reject, indicating that 

none of the variable groupings can be dropped, and these inferences are robust to basic variations 

in the model. The implication is that no two of the variable groups encompasses the third.  

The next 22 rows present results of estimating equation (2) in which the only retained element 

of Z is, sequentially,       . In all 22 cases we strongly reject dropping X or G, but the hypothesis 
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that the individual GCM does not contribute significant explanatory power is rejected at 5% only 

three times, and in one of those cases (model 22) the coefficient is negative. So we only find two 

cases (models 11 and 19) in which the individual model contributes significant explanatory power. 

In other words, a model consisting only of the geographic and socioeconomic variables encompass 

a model containing any one of the retained GCMs except models 11 and 19 , accounting not only for 

some of the variability in temperatures but also the apparent explanatory power of the GCMs. 

It is notable that, in every case, the last two columns show that we can massively reject the 

hypothesis that M1 encompasses M4. In other words the GCM data (either from an individual model 

or from the set of retained models) cannot account for the explanatory power of a model that 

includes G and X. Hence the concern about the potential ambiguity between Z and G confounding 

the test, as noted in Section 2.2, can be set aside.  

 

3.3 NON-NESTED TESTS 
Tables 5 and 6 show the results from the non-nested tests based on estimation of versions of 

equation (6) constructed two ways so that each variable group is tested both for inclusion and 

exclusion: 

            ̂     (17) 

and 

            ̂    . (18) 

The first column shows the model number when a single GCM is tested. The last row reports results 

when all 12 retained models are included in Z. Each remaining column shows the p values of the 
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indicated tests. The first two show the results from testing 0ˆ   and 1ˆ   from equation (17), 

which tests that the variable group containing GCMs has, respectively, zero explanatory power or 

100% of the explanatory power. In five of 12 cases (models 10, 11, 13, 18, and 19) the hypothesis of 

zero explanatory power is rejected at 10% and in two cases at 5% (models 11 and 19). In no case is 

the hypothesis of full explanatory power rejected, but this is likely due to the wide variances on  ̂ 

rather than an indication that the X variables have no explanatory power. Estimation of equation 

(18) confirms this. The test of   ̂    (socioeconomic variables have no explanatory power) 

strongly rejects in every case. Across all 12 estimations in Table 5 the mean p value is 4.61E-07 

(Table 6). Also the p-values on the test of 1ˆ   in equation (18) are higher than in equation (17) in 

almost all cases, with a mean value of 0.775 versus 0.455 (Table 6).  

Overall the nested and non-nested tests identify models 11 and 19 (respectively from the 

Institute of Atmospheric Physics, China, and the National Center for Atmospheric Research, USA) as 

the only ones that have the correct sign, a non-zero level of explanatory power against a rival that 

only includes geographic and socioeconomic variables, and whose apparent explanatory power is 

incapable of being accounted for by a rival that makes no use of GCM processes. This indicates, 

somewhat surprisingly, that twenty of the twenty two GCMs demonstrated no significant 

explanatory power for the spatial pattern of 1979-2002 warming trends over land. However, the 

climate models were tested either one-at-a-time or jointly. We noted above that models might 

perform best in some linear combination, or when tested against a partial linear combination of 

rival variables. We now turn to the BMA analysis results to see whether model uncertainty is 

masking some aspects of potential explanatory power of our explanatory variables.  
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3.4 BAYESIAN MODEL AVERAGING 
Our main interest is in the comparative explanatory power of Z and X when G is included in the 

model, such as models M3 and M4 in equation (4). To implement this in BMA we forced the 

columns of G to be included by assumption. Hence the BMA analysis searched only over the 19 

columns of X and Z (including only the retained GCMs 2, 3, 10, 11, 13, 14, 16, 17, 18, 19, 20 and 21), 

requiring evaluation of 219 models. Table 7 shows the results, with the variables ranked (high to 

low) by Posterior Inclusion Probabilities (PIPs). The asterisks denote one or two standard 

deviations from zero. These are not the same as t-statistics, but are included for convenience.  

The first column lists the variable name and the second lists the PIP. The third and fourth 

columns list the BMA point estimates and standard deviations. The fifth and sixth columns show, 

respectively, the point estimates and standard deviations using the model that obtained the highest 

support in the data, which coincides with the model that includes only those variables in X and Z 

that obtain PIPs greater than 0.5, namely e, g, ms11 and ms13.  

Table 8 provides some additional estimates for comparative purposes. These are classical 

regression estimates under three specifications: the full model (G, X and Z), the model with only G 

and the socioeconomic variables X, and the model with only those variables that obtain PIP scores 

above 0.2. As is the case in the classical tests, a combination of GCMs and socioeconomic variables 

are necessary to explain the surface temperature trends. The BMA analysis indicates that only two 

columns from each of X and Z obtain PIPs over 0.5, and thus only a subset of each category is more 

likely than not to be in the true model.  

The regression models receiving the most support in the data yield point estimates for three 

atmospheric oscillation terms (NAO, AO and SOI) that are near zero; while the PDO term has a point 
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estimate just under 0.1. GCMs 2, 3, 16, and 27 all receive essentially no support in the data, 

obtaining PIP scores below 0.05.  

One noticeable discrepancy between the classical tests and the BMA results is that model 19 is 

no longer the top-ranked GCM, instead its PIP is only 0.215, substantially smaller than that for 

models 11 and 13. In other words, whereas model 19 was unencompassed by the non-GCM data 

when tested alone, and therefore appeared to have unique explanatory power, in the BMA analysis 

GCMs 11 and 13 emerge with the highest probability of jointly belonging in the correct model.  

Another, and even more unexpected, discrepancy is the disappearance of an effect due to 

population growth, since it is typically considered a good indicator of socioeconomic influences on 

temperature trends, and in a model with only G and X it obtains a coefficient of about 0.29 and a p 

value of 0.034 (see Table 8, second and third columns). Table 7 shows that this result is not robust 

to model uncertainty: models receiving the strongest support in the data yield a low probability 

that the population growth variable belongs in the model, and the BMA point estimate is only 0.053. 

A possible explanation is that the space spanned by the entire group of socioeconomic variables is 

nearly spanned by the subset consisting only of GDP density and education, so that these serve as 

an effective proxy for the full effects of variations in socioeconomic conditions and rates of change, 

including population change. If so, the penalty for adding other variables imposed in the model 

support criterion (marginal likelihood, equation 15) would override the improvement in 

explanatory power, resulting in greater posterior support for the simpler specification. 

The classical and Bayesian results can be reconciled using encompassing tests. The BMA analysis 

isolates variables G, e, g, ms11 and ms13 as constituting the model with the highest support score 

in the data, net of penalties for overspecification (log of the marginal likelihood). The question then 

arises whether such a model can encompass the remaining variables. An F test on the excluded 
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variables rejects this hypothesis (P=0.0005). However, by adding in the next two variables on the 

list, namely c (change in coal consumption) and ms19, the log marginal likelihood does not change 

much and we no longer reject the hypothesis that the resulting model encompasses all the 

remaining variables (P=0.1837). Moving sequentially down the list no further additions yield 

significant rejections of the encompassing test, indicating that the model consisting of G, ms11, 

ms13, ms19, e, g and c provides all the explanatory power found in the complete data set.  The 

estimates are shown in the last column of Table 8. Hence by using a rule that variables are retained 

if they have a PIP score of 0.2 or higher, we find the Bayesian and classical results concur.  

 

4 CONCLUSIONS 

In view of the generally weak performance of climate models at predicting the spatial pattern of 

surface temperature trends it might be supposed that we are testing their accuracy at something 

they were never designed to do. Our tests asks, if we are given the observed pattern of LT trends 

over a 24 year period plus some fixed geographical measures, can climate models, when provided 

with observed forcings over the same interval as inputs, provide any information that significantly 

reduces the forecast errors of the observed pattern of climate trends at the Earth’s surface over the 

same interval. If users believe the models were never designed to meet this standard, then our 

results will not be surprising, and could be interpreted merely as confirmation that this is not 

something that should be expected of climate models. But since the socioeconomic variables do 

significantly improve such forecasts, it is arguable that the climate models ought to be able to do so 

as well, and their extensive use for the prediction and interpretation of the spatial patterns of 

temperature change at the Earth’s surface, and the use of such projections in reports for 
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policymakers (e.g. Parry et al. 2007), leads us to the view that it is appropriate to assess their 

usefulness in this regard.  

When testing GCM’s one at a time, 10 of 22 do not reliably yield positive correlations with the 

observed spatial pattern of trends at the Earth’s surface and are removed from the joint analysis. 10 

of the 12 remaining models are encompassed by simpler models that do not have GCM information 

in them. When treating variables jointly within their groupings, nested and non-nested test results 

indicate that none of the three data categories encompass the other two, and therefore a good 

model of the spatial pattern of trends at the land surface likely requires some combination of GCM 

output, measures of socioeconomic contamination of climate data, and some fixed geographic 

detail. Such a model would be statistically superior to one that depends on GCM outputs alone.  

This is confirmed in a BMA exercise, which searches over 219 possible regression specifications 

and finds that some of both the GCM and socioeconomic variable groups likely belong in the model. 

Of the GCMs, classical tests identify models 11 (IAP FGOALS 1.0g) and 19 (NCAR CCSM 3.0) as 

having the most robust explanatory power, while the Bayesian analysis identifies models 11 and 13 

(INM 3.0) as having the most, with model 19 coming third on the list. Models 2, 3, 16 and 17 

(CCCMA CGCM 3.1 T47& T63, MIROC 3.2 MEDRES and MPI ECHAM5) have very little probability 

(<0.05) of being included in a valid explanatory model of the surface pattern of climate change, and 

their outputs are encompassed by a simple empirical model that does not include any GCM 

processes, meaning that they do not contribute any significant explanatory power. 

The Bayesian analysis yields robust posterior inclusion probabilities (PIPs) that indicate the 

likelihood that each variable belongs in the true model. The geographic variables are forced in by 

assumption (though we tested that they are not encompassed by the GCMs). Of the GCM and 

socioeconomic data, BMA analysis assigns PIPs greater than 0.2 to educational attainment, GDP 
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density and the change in local coal consumption, and GCMs 11, 13 and 19, which are from, 

respectively, China, Russia and the USA. A model consisting only of these measures encompasses all 

remaining GCM output and socioeconomic measures. Thus we conclude that a good model of the 

spatial pattern of surface climatic trends likely requires a combination of the processes represented 

in some GCMs and measures of data contamination induced by regional socioeconomic variations.  
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6 TABLES 

Variable     
Name Definition Mean Std. Dev. Min Max 
y Surface temperature trend 

(oC/decade) by gridcell 
0.3030 0.2527 -0.717 1.042 

msu Lower tropospheric temperature 
trend (oC/decade) by gridcell 

0.2429 0.15165 -0.0921 0.6588 

dry Air predominantly dry (mean 
dewpoint < 0oC) 

0.4673 0.4995 0 1 

water Grid cell includes major coastline 0.6028 0.4899 0 1 
abslat Absolute latitude 40.72 17.81 2.5 82.5 
aorv Correlation between Atlantic 

Oscillation and gridcell 
temperature 

-0.0406 0.5615 -2.5281 1.621 

naorv Likewise for North Atlantic 
Oscillation 

-0.2584 0.7374 -3.5433 1.6746 

pdorv Likewise for Pacific Decadal 
Oscillation  

-0.0835 0.2722 -1.1770 0.9650 

soirv Likewise for Southern Oscillation 
Index 

0.0416 0.1728 -0.4977 0.7192 

g 1979 GDP density ($million/km2.)  0.3006 0.6056 0.0014 3.0023 
e Sum of literacy rate and post-

secondary attainment 
106.78 26.19 11.6 144.2 

x Number of missing months in 
gridcell record 

0.7313 2.4419 0 24 

p % growth in population  0.2774 0.2092 -0.0691 1.2353 
m % growth in real per capita 

income  
0.3781 0.6156 -0.7901 2.1472 

q % growth in GDP 0.7663 0.8410 -0.6686 3.0025 
c % growth in coal consumption 1.031 4.1106 -1 39.333 

TABLE 1. SUMMARY STATISTICS FOR VARIABLES IN G AND X. SAMPLE SIZE = 428 
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 2 

TABLE 2. GCM NAMES AND SUMMARY STATISTICS FOR VARIABLES   . NUMBER OF OBSERVATIONS = 428. *-INCLUDED IN BMA ANALYSIS. 3 
Column 4 shows the average temperature trend per grid cell in oC/decade. For further details see http://www-4 
pcmdi.llnl.gov/ipcc/model_documentation/ipcc_model_documentation.php.  5 

Model 
Number Name 

 
Modeling Team Mean 

Std. 
Dev. Min Max 

1 BCCR BCM 2.0 Bjerknes  Centre for Climate Research, Norway 0.127 0.209 -0.774 0.720 
2* CCCMA CGCM 3.1 T47 Canadian Centre for Climate Modeling and 

Analysis, University of Victoria 
0.308 0.123 -0.120 0.972 

3* CCCMA CGCM 3.1 T63 0.284 0.221 -0.537 1.259 
4 CSIRO MK 3.0 Commonwealth Scientific and Industrial 

Research Organization, Australia 
0.149 0.275 -1.610 1.058 

5 CSIRO MK 3.5 0.176 0.312 -1.323 0.958 
6 GFDL CM 2.0 Geophysical Fluid Dynamics Laboratory, 

National Oceanic and Atmos. Admin., USA 
0.451 0.459 -0.141 2.947 

7 GFDL CM 2.1 0.337 0.298 -0.364 1.746 
8 GISS AOM Goddard Institute of Space Studies, National 

Aeronautics and Space Administration, USA 
0.179 0.157 -0.246 1.194 

9 GISS EH 0.229 0.152 -0.139 0.735 
10* GISS ER 0.220 0.136 -0.110 0.610 
11* IAP FGOALS 1.0g Institute of Atmospheric Physics, China 0.094 0.164 -0.312 0.808 
12 INGV ECHAM 4 Max Planck Institute for Meteorology, Germany 0.198 0.238 -0.512 1.083 
13* INM CM 3.0 Institute for Numerical Mathematics, Russia 0.230 0.276 -0.430 1.127 
14* IPSL CM 4 Institut Pierre Simon Laplace, France 0.308 0.296 -0.272 3.190 
15 MIROC 3.2 HIRES Center for Climate System Research 

(The University of Tokyo), Japan 
0.248 0.249 -0.795 1.077 

16* MIROC 3.2 MEDRES 0.208 0.153 -0.181 1.042 
17* MPI ECHAM 5 Max Planck Institute for Meteorology, Germany 0.206 0.088 0.002 0.671 
18* MRI CGCM 2.3.2a Center for Climate System Research, Japan 0.185 0.138 -0.124 0.767 
19* NCAR CCSM 3.0 National Center for Atmospheric Research, 

Colorado USA 
0.291 0.174 -0.060 1.119 

20* NCAR PCM 1 0.188 0.123 -0.121 0.609 
21* UKMO HAD CM 3 Hadley Centre for Climate Prediction and 

Research / Met Office, UK 
0.134 0.274 -2.495 1.040 

22 UKMO HADGEM 1 0.451 0.442 -0.484 1.944 

http://www-pcmdi.llnl.gov/ipcc/model_documentation/ipcc_model_documentation.php
http://www-pcmdi.llnl.gov/ipcc/model_documentation/ipcc_model_documentation.php
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  ̂  from regression:  Prob 
Model univariate multivariate Keep GCM ( ̂   ) 
1. -0.1980 0.0370 0 - 
2. 0.4934 0.0914 1 0.2985 
3. 0.0093 0.0282 1 0.5552 
4. 0.0440 -0.0439 0 - 
5. -0.1991 0.0244 0 - 
6. 0.0736 -0.0024 0 - 
7. -0.0538 -0.0051 0 - 
8. 0.2327 -0.0086 0 - 
9. 0.5826 -0.0255 0 - 
10. 0.5868 0.1157 1 0.0778 
11. 0.0577 0.1677 1 0.0437 
12. -0.1033 -0.1012 0 - 
13. 0.3893 0.1222 1 0.0538 
14. 0.2021 0.0469 1 0.1745 
15. -0.0766 -0.0626 0 - 
16. 0.2720 0.0019 1 0.9816 
17. 0.1045 0.0735 1 0.7445 
18. 0.4523 0.1848 1 .0916 
19. 0.6344 0.1526 1 0.0195 
20. 0.5378 0.1369 1 0.3504 
21. 0.0639 0.0566 1 0.3453 
22. 0.1703 -0.0569 0 - 
 3 

TABLE 3. TESTS OF BASIC CORRELATION BETWEEN GCM GUESS PATTERNS AND OBSERVED TRENDS OVER 4 

LAND.  5 

Columns show coefficient values on    in univariate and multivariate cases, corresponding to 6 
equations (1) and (2). GCM being tested indicated by row number. “Keep GCM” indicates 1 if both 7 
coefficients are positive, 0 otherwise. Prob value in 5th column, “-“ indicates model not retained in 8 
joint analyses. Bold face denotes significant at 5%.  9 
 10 
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Model Coefficient being tested: Test of whether M1 
included       ̂          ̂         ̂    Encompasses M4 

in Z F p F p+ F p++ F p+++ 
all  18.6372  2.42e-18                                         
all  3.9719   0.0001                      25.670  0           
all  22.9645   5.92e-21   3.0036   0.0075                   
all   2.7208   0.0040   4.7540    0.0002   21.812  0  23.579  0 
1  0.7290   0.3958   9.1119  0  66.110  0  75.428  0 
2*  1.0952   0.2985    8.8202  0  43.800  0  65.799  0 
3*  0.3510   0.5552   7.6954  0  61.491  0  75.307  0 
4  1.2965   0.2583    9.3598  0  60.905  0  81.779  0 
5  0.1531   0.6966   10.988  0  69.424  0  65.924  0 
6  0.0069   0.9338   9.5369  0  63.387  0  76.650  0 
7  0.0523    0.8197   9.0582  0  53.824  0  63.650  0 
8  0.0420   0.8381   9.1646  0  58.156  0  73.512  0 
9  0.0807   0.7771   8.3841  0  38.232  0  60.512  0 
10*  3.1928   0.0778   7.8993  0  47.687  0  64.577  0 
11*  4.2026   0.0437   7.8604  0  56.803  0   80.900  0 
12  3.4947   0.0653   8.9041  0  83.508  0  76.669  0 
13*  3.8327    0.0538   7.4947  0  66.181  0  75.910  0 
14*  1.8771   0.1745   9.1613  0   58.462  0  71.825  0 
15  1.3561   0.2477   9.6312  0  56.445  0  64.299  0 
16*  0.0005   0.9816   9.3193  0  64.077  0  80.757  0 
17*  0.1070   0.7445   8.8075  0  62.830  0  76.124  0 
18*  2.9165   0.0916   8.8827  0  54.778  0  69.442  0 
19*  5.6880   0.0195   8.1350  0  51.187  0  68.539  0 
20*  0.8824   0.3504   6.4801  0  72.635  0  71.748  0 
21*   0.9016     0.3453   7.5206  0  60.921  0   74.979  0 
22  6.4741    0.0129   9.0865  0  52.571  0  76.678  0 
 2 

TABLE 4. TESTS OF ENCOMPASSING RELATIONS AMONG EXPLANATORY VARIABLE CATEGORIES.  3 
Column 1: GCM being tested. Columns 2 and 3: F and p values, respectively, for test that indicated column or columns of Z have no 4 
explanatory value, or are encompassed by other variables in the model. Columns 4 and 5, same for test that columns of X are 5 
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encompassed by other explanatory variables. Columns 6 and 7, same for test that columns of G are encompassed.  Bold face 1 
denotes significant at 5%. Columns 8 and 9: F and p values for test that model M1 (       ) encompasses model M4 2 
(          ), in other words GCM’s account for apparent explanatory power of non-GCM variables. *-GCM explanatory 3 
pattern has positive correlation with observations. +: values below 5e-6 reported as 0.  ++ values below 7.4e-19 reported as zero. 4 
+++Values below 4.4e-24 reported as 0.  5 
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 p-values of non-nested test of % explanatory power of 

 GCMs Socioeconomic  Vars 
GCM 
Number 0% 100% 0% 100% 

2 0.2985 0.3930 0 0.9027 

3 0.5552 0.2646 0 0.9231 

10 0.0778 0.4050 0 0.9042 

11 0.0437 0.3846 0 0.5853 

13 0.0538 0.1574 0 0.5473 

14 0.1745 0.1567 0 0.8151 

16 0.9816 0.9744 0 0.9999 

17 0.7445 0.8925 0 0.9822 

18 0.0916 0.9802 0 0.9475 

19 0.0195 0.3820 0 0.8332 

20 0.3504 0.2603 0 0.7025 

21 0.3453 0.4776 0 0.7900 

all 0.0063 0.1843 0 0.1421 
 1 

TABLE 5. NON-NESTED TESTS OF GCM AND SOCIOECONOMIC VARIABLE EXPLANATORY POWERS. 2 
Rows included only if model exhibits positive correlation with observed surface trend pattern. 2nd 3 
and 3rd columns: p-value on tests of  =0 and   =1, respectively, in equation (17). 4th and 5th 4 
columns: test of   =0 and   =1, respectively, in equation (18). Bold faced denotes significant at 5%. 5 
Values below 3.1e-8 reported as zero.  6 
  7 
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 4 

 5 

TABLE 6. SUMMARY STATISTICS FOR SCORES IN TABLE 5.  6 
  7 

Test Mean Std. Dev Min Max 
GCM: 0% 0.2879 0.3068 0.0063 0.9816 
GCM: 100% 0.4548 0.2999 0.1567 0.9802 
Socioecon: 0% 4.61e-07 1.64e-06 9.37e-10 5.92e-06 
Socioecon: 100% 0.7750 0.2375 0.1421 0.9999 
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 1 

Variable Posterior 
Inclusion 

Probability 

Point 
estimate 
(BMA) 

Standard 
Deviation 

(BMA) 

Point 
Estimate 
(Model 

Selection) 

Standard 
Deviation 

(Model 
Selection) 

msu 1.0000 0.9757     0.0820** 0.9525     0.0716** 
aorv 1.0000 0.0424     0.0750 0.0388 0.0708 
naorv 1.0000 -0.0296     0.0541 -0.0238     0.0497 
pdorv 1.0000 0.0966     0.0685* 0.0735     0.0644* 
soirv 1.0000 0.0429     0.0973 0.0111 0.0921 
slp 1.0000 0.0078     0.0033** 0.0078     0.0031** 
dry 1.0000 4.5443     4.3336* 3.0458     4.0987 
dslp 1.0000 -0.0044     0.0043* -0.0029     0.0040 
water 1.0000 -0.0190     0.0196 -0.0162     0.0191 
abslat 1.0000 0.0011     0.0009* 0.0009     0.0008* 
e 0.9999 -0.0022     0.0004** -0.0021     0.0004** 
g 0.8576 0.0435     0.0229* 0.0504     0.0150** 
ms11 0.7610 0.1367     0.0923* 0.1851     0.0571** 
ms13 0.5124 0.0650     0.0723 0.1277     0.0477** 
c 0.2460 0.0011     0.0022 0 0 
ms19 0.2150 0.0315     0.0690 0 0 
ms18 0.1070 0.0134     0.0470 0 0 
ms21 0.0873 0.0041     0.0165 0 0 
ms10 0.0778 0.0083     0.0375 0 0 
ms14 0.0715 0.0032     0.0149 0 0 
ms20 0.0695 0.0073     0.0355 0 0 
p 0.0528 0.0034     0.0218 0 0 
q 0.0520 0.0005     0.0067 0 0 
m 0.0500 0.0007     0.0085 0 0 
ms2 0.0446 0.0026     0.0234 0 0 
ms16 0.0436 -0.0021     0.0198 0 0 
ms3 0.0398 0.0005     0.0095 0 0 
ms17 0.0364 0.0003     0.0236 0 0 
x 0.0345 0.0000     0.0007 0 0 
 2 

TABLE 7. BAYESIAN MODEL AVERAGING RESULTS. 3 
** = two posterior standard deviations from zero. * = one posterior standard deviation from zero. 4 
Column 1: Variable name. Column 2: Posterior Inclusion Probability (PIP). Column 3: Point 5 
Estimate of slope coefficient (equation 12). Column 4: Standard Deviation of point estimate 6 
(equation 13). Columns 5 and 6: Point Estimates and Standard Errors of model obtaining the 7 
maximum support in the data. 8 
 9 

  10 
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 Dependent variable: y 

 Model based on: 

 Variable  
Use of all 
variables 

Inclusion only 
of G and X 

Variables 
identified in 

BMA 

 msu  0.8968 0.9792 0.913 

  (0.000) (0.000) (0.000) 

 slp  0.0088 0.0079 0.0092 

  (0.028) (0.033) (0.012) 

 dry  4.2086 5.2144 4.4492 

  (0.304) (0.226) (0.300) 

 dslp  -0.0041 -0.0051 -0.0043 

  (0.309) (0.232) (0.306) 

 water  -0.0251 -0.0244 -0.0206 

  (0.243) (0.287) (0.333) 

 abslat  0.0014 0.0023 0.001 

  (0.260) (0.085) (0.208) 

 aorv  0.0056 0.071 0.0153 

  (0.961) (0.571) (0.904) 

 naorv  0.0032 -0.0636 0.006 

  (0.971) (0.470) (0.949) 

 pdorv  0.101 0.1386 0.0839 

  (0.142) (0.032) (0.225) 

 soirv  0.0352 0.0891 0.0374 

  (0.740) (0.383) (0.738) 

 g  0.0412 0.0425 0.0531 

  (0.006) (0.001) (0.000) 

 e  -0.002 -0.0025 -0.0021 

  (0.000) (0.000) (0.000) 

 x  -0.0011 0.002   

  (0.786) (0.451)   

 p  0.1866 0.2897   

  (0.161) (0.034)   

 m  0.2335 0.2895   

  -(0.125) (0.072)   

 q  -0.1735 -0.212   

  (0.150) (0.097)   

 c  0.0055 0.0059 0.0044 

  (0.001) (0.001) (0.000) 

 ms2  0.0455     

  (0.651)     

 ms3  -0.0388     
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  (0.344)     

 ms10  0.0178     

  (0.814)     

 ms11  0.1387   0.1801 

  (0.104)   (0.003) 

 ms13  0.0891   0.1128 

  (0.093)   (0.044) 

 ms14  0.0293     

  (0.365)     

 ms16  -0.0847     

  (0.303)     

 ms17  -0.0137     

  (0.952)     

 ms18  0.0654     

  (0.671)     

 ms19  0.0908   0.1362 

  (0.504)   (0.025) 

 ms20  0.0971     

  (0.430)     

 ms21  0.0421     

  (0.365)     

 constant -8.7895 -7.8746 -9.2155 

  (0.030) (0.036) (0.013) 

 N  428 428 428 

R2  0.594 0.573 0.587 

TABLE 8 : REGRESSION RESULTS FOR 3 MODELS.  1 
Regression of temperature trend pattern y on various groups of dependent variables. Shown are 2 
coefficients and underneath in parentheses the p-value of the associated t-statistic. Bold face 3 
denotes significant at 5%. Error terms corrected for heteroskedasticity and clustering.  4 
  5 
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7 FIGURE 1 

 2 

 3 

Figure 1: Locations of 428 grid cells in data base.   4 
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8 APPENDIX: FURTHER DETAILS ON DATA SET 1 

Temperature Trends: The observed surface temperature trends     are linear (Ordinary Least 2 

Squares) trends through monthly temperature anomalies (not subject to annual averaging) within 3 

5x5 degree grid cells over 1979:1 to 2002:12 in the land-based grid cells in the CRU data, versions 2 4 

and 3, as well as in the GCM-generated data and the tropospheric data. Because of the need for a 5 

trend across 23 years we required each cell to have data for at least ninety percent of the years, 6 

where a year is considered intact if at least 8 months are available. In the CRU version 2 data this 7 

left 451 usable locations. Antarctic cells were removed, leaving 440 observations in the final 8 

version 2 data set but only 428 in CRU version 3.  9 

GCM Data: We used all available (55) runs from 22 GCMs used in the IPCC report (Hegerl et al. 10 

2007). The archive is at http://www-pcmdi.llnl.gov. Multiple runs from a single model were 11 

averaged. HadCM3 wasn't used because it did not represent its data in the required IPCC pressure 12 

levels. MUIB ECHO G wasn't processed because no atmospheric temperature data was available, 13 

thus synthetic MSU brightness temperatures couldn't be calculated. A single run is a deterministic 14 

computation of a climate model sing as inputs the observed climatic forcings over the historical 15 

interval, and solving for predicted climate fields including temperature, pressure and precipitation.  16 

The calculation of tropospheric temperature from the models was done using the same algorithm 17 

and weighting functions implemented in Santer et al. (2008), which are designed to yield layer 18 

averages corresponding to observational ones measured by weather satellites. Model trend fields in 19 

degrees C/decade for the surface and lower tropospheric temperature were calculated as follows. 20 

1. Extract all monthly GCM-generated data on temperature by grid cell from the surface 21 

through to the mid-troposphere from Jan 1979 - Dec 2002. 22 

http://www-pcmdi.llnl.gov/
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2. Compute the climatology (gridcell averages by month) for the same period. 1 

3. Subtract the climatology from the original data, yielding deviations or “anomalies.” 2 

4. Calculate the least squares trend field for each grid point only if all the data points are valid. 3 

5. Collect only the trends that correspond to the McKitrick and Michaels (2007) set of lat/lon 4 

coordinates. 5 

6. Multiply the resulting annual trends by 10 to obtain decadal trends 6 

There was no missing data for the surface temperature variable in models, but there was some 7 

missing data in some runs for the lower tropospheric (LT) temperatures. This is because the 8 

models originally didn't represent the atmospheric temperature on the same set of pressure levels 9 

that the IPCC mandated. Interpolation was required and this resulted in some missing data points 10 

in the lower atmosphere. To calculate the LT temperature, the atmospheric temperature profile was 11 

multiplied by a set of weights specific to a given atmospheric layer (TLT, TMT, TLS). The weighted 12 

temperatures were then added up and divided by the sum of weights that correspond to non-13 

missing temperature values. If this total weight did not equal or exceed 0.5 or 50%, then the 14 

temperature at that grid point was flagged as missing. 15 

Geographic Data: pressi is the mean sea level air pressure in grid cell i. The source of the pressure 16 

data is the climatology of Jenne (1974).        is a dummy variable denoting when a grid cell is 17 

characterized by predominantly dry conditions (which is indicated by the mean dewpoint being 18 

below 0 oC).                  . Surface warming due to greenhouse gases is hypothesized to 19 

occur faster in regions with relatively dry air and high atmospheric pressure (Michaels et al. 2000) 20 

so pressure enters the regression model as a linear spline function with a different intercept and 21 
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slope in dry regions versus moist regions.        is a dummy variable indicating the grid cell 1 

contains a major coastline.         denotes the absolute latitude of the grid cell.  2 

Oscillation data: The measures for the Arctic Oscillation, North Atlantic Oscillation, Pacific Decadal 3 

Oscillation and Southern Oscillation are taken from McKitrick (2010), who obtained them in turn 4 

from http://www.cdc.noaa.gov/Correlation, the website of the National Oceanic and Atmospheric 5 

Administration). There is a single value of each oscillation index for the whole planet each period. 6 

What is reported at the grid cell level is the correlation between the temperatures in that grid cell 7 

and the index value over the 1979-2001 interval, thus representing a measure of the influence of 8 

the oscillation over space. The correlation can be computed in two ways, as simple Pearson 9 

correlation term, or as a regression coefficient. McKitrick (2010) reports that the latter formula 10 

yielded stronger results for the oscillation terms in the regression models so that is the form used 11 

herein.  12 

Socioeconomic data: Each grid cell was assigned to a country. Annual real (inflation adjusted) GDP 13 

for 1979, 1989 and 1999 for each country was obtained primarily from Easterly and Sewadeh 14 

(2003) or the Central Intelligence Agency (CIA) World Fact Book. Conversions from local currency 15 

to US dollars was done using the purchasing power parity method. There were small adjustments 16 

made to the economic data for some countries to provide consistency in quantities where direct 17 

measures were unavailable. In most cases the adjustment took the form of using an available 18 

observation for one or two years after the desired year, and adjusting it backwards. Population data 19 

are obtained from Easterly and Sewadeh (2003) and the percent change    is measured from 1979 20 

to 1999. Income growth    is the percentage change in real GDP per capita from 1979 to 1999. GDP 21 

growth    is defined as the percentage change in real GDP from 1979 to 1999. National coal 22 

consumption data were obtained from the US Energy Information Administration and the coal 23 

http://www.cdc.noaa.gov/Correlation
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growth measure is the percentage growth of short tons of coal consumed between 1980 and 2000. 1 

The 1999 (or closest year) national literacy rate and the percentage completing post-secondary 2 

education was obtained from UNESCO. The two measures are summed together to yield   . Land 3 

area estimates (excluding water) for each country were obtained from the CIA World Fact Book. 4 

GDP density    is measured as $million/km2. The 1979 value was used to help ensure the right-5 

hand side variables are predetermined with respect to the dependent variable.    is the number of 6 

months over the period 1979-2002 in which an observation was missing for a grid cell.  7 

 8 

 9 


