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 Summary 

To generate a climate data set, temperature data collected at the Earth’s surface must be adjusted 

to remove non-climatic effects such as urbanization and measurement discontinuities. Some 

studies have shown that the post-1980 spatial pattern of temperature trends over land in 

prominent climate data sets is strongly correlated with the spatial pattern of socioeconomic 

development, implying that the adjustments are inadequate, leaving a residual warm bias. This 

evidence has been disputed on three grounds: spatial autocorrelation of the temperature field 

undermines significance of test results; counterfactual experiments using model-generated data 

suggest such correlations have an innocuous interpretation; and different satellite covariates yield 

unstable results. Somewhat surprisingly, these claims have not been put into a coherent 

framework for the purpose of statistical testing. We combine economic and climatological data 

sets from various teams with trend estimates from global climate models and we use spatial 

regressions to test the competing hypotheses. Overall we find that the evidence for contamination 

of climatic data is robust across numerous data sets, it is not undermined by controlling for 

spatial autocorrelation, and the patterns are not explained by climate models. Consequently we 

conclude that important data products used for the analysis of climate change over global land 

surfaces may be contaminated with socioeconomic patterns related to urbanization and other 

socioeconomic processes.  
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Socioeconomic Patterns in Climate Data  

  

  

1 Introduction 

 

1.1 Background 

Temperatures are monitored at thousands of sites around the world, for a variety of purposes: weather 

analysis and forecasting, tracking aviation conditions at airports, assessing the risk of smog formation in 

urban areas, etc. In most cases, the actual temperature recorded at a specific site, such as an airport, is the 

measure sought. But for the purpose of measuring long term climatic trends, such as for use in studies of 

global warming, raw temperature data are not appropriate. This is because, over time, local mean 

temperatures can change for reasons unrelated to the climate. If we consider a monitoring site in a region 

which is known to have experienced no climatic warming, there might still be a trend in the temperature 

record if a nearby city expanded and encompassed the site, or the type of thermometer changed and the 

equipment was not carefully calibrated, or the time of day at which readings are taken was changed, etc. 

These local changes (called “inhomogeneities”) must be filtered out to reveal, if possible, the underlying 

trends attributable solely to long-term climatic changes.  

 The ideal monitoring site would be one which has undergone no changes to the local land surface 

since the start of modern temperature monitoring (roughly, since the late 1800s), and which has not 

experienced any local air pollution, which can cause small but measurable local cooling or warming, and 

which has had the same equipment and recording methodology across time. Because there are few such 

sites in the world, long temperature records are typically taken from sites that fail one or more of these 

conditions. Hence the records must be modified in some way to reveal the climatic trend. The dangers of 

using raw temperature data for climate analysis has long been noted. In 1953, commenting on the 

growing use of weather records for measuring climate change, J. Mitchell Jr. [19] pointed to various 

sources of bias and cautioned: “The problem remains one of determining what part of a given 

temperature trend is climatically real and what part the result of observational difficulties and of artificial 

modification of the local environment.”  

 This paper is concerned with the problem Mitchell, and many others since then, have discussed. 

We will examine the claims made by providers and users of climate data to the effect that the problems 

of non-climatic influences on climate data sets have been taken into account and rectified. We will show 

that this assumption has been tested and found unlikely to be true. We will then focus on some recent 

counter-arguments that defend the standard interpretation of climatic data, and we will show that those 

arguments are not supported in formal testing. Our conclusion will be that climate data products likely do 

not measure what climate scientists think they measure; that they are likely contaminated with patterns 

related to socioeconomic development and industrialization, and that these influences render them biased 

for the purpose of measuring global warming and interpreting its causes. 

 

 

1.2 Climate Data Adjustments 

The Climatic Research Unit (CRU) at the University of East Anglia disseminates the world’s most 

widely-used surface temperature data sets, including those used in reports of the influential 
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Intergovernmental Panel on Climate Change (IPCC, [6]). The CRU web page 

(http://www.cru.uea.ac.uk/cru/data/hrg/) presents two data compilations: CRU TS and CRUTEM. The 

TS series are not subject to adjustments for non-climatic influences, and users are thus cautioned not to 

use them for climate analysis (see http://www.cru.uea.ac.uk/cru/data/hrg/timm/grid/ts-advice.html). The 

TS website notes that, for climate analysis, it is necessary to remove, inter alia, “all influences of urban 

development or land use change on the station data.” Users are directed instead to the CRUTEM data 

products, which, it is claimed, have been adjusted “for the reliable detection of anthropogenic trends.” 

Readers are referred to Brohan et al. [3], Jones and Moberg [8] and Jones et al. [9] for explanations of 

the specific adjustments.  

 Brohan et al. [3] does not explain the adjustments, it mainly focuses on the claim that any biases 

are very small. [3] Section 2.3 says of their temperature archive that adjustments were made to raw 

temperature series but the originals were not retained, so it is now impossible to say how large the 

adjustments were. [3] assumes any inhomogeneity uncertainties are symmetric around zero (p. 6). [3] 

Section 2.3.3 states that to properly adjust the data for urbanization bias would require a global 

comparison of urban versus rural records, but classifying records in this way is not possible since “no 

such complete meta-data are available” (p. 11). The authors instead invoke the assumption that the bias is 

no larger than 0.006 degrees per century. [8] likewise offers little information about the data adjustments. 

They discuss combining multiple site records into a single series, but do not discuss removing non-

climatic contamination. Moreover, the article points out (page 208) that it is difficult to say what 

homogeneity adjustments have been applied to the raw data since the original sources do not always 

include this information. [9] emphasizes that non-climatic influences must be corrected (Section 2, p. 37) 

for the data to be useful for climatic research. But the part of the paper that outlines the adjustments 

consists of only three paragraphs in Section 2.1, none of which explains the procedures. The only 

explanatory statement is the following (page 174): 

 

“All 2000+ station time series used have been assessed for homogeneity by subjective 

interstation comparisons performed on a local basis. Many stations were adjusted and some 

omitted because of anomalous warming trends and/or numerous nonclimatic jumps (complete 

details are given by Jones et al. [1985, 1986c]).” 

 

The two reports cited (“Jones et al. 1985, 1986c”) are technical reports submitted to the US Department 

of Energy some 25 years ago. They only cover data sets ending in the early 1980s, whereas the data now 

under dispute is the post-1979 interval. Even if the adjustments were adequate in the pre-1980 interval it 

is likely impossible to have estimated empirical adjustments in the early 1980s that would apply to 

changes in socioeconomic patterns that did not occur until the 1990s and after.  

 In sum, the CRU cautions that its unadjusted temperature data products (TS)  are inappropriate 

for climatic analysis, and refers users to the CRUTEM products. Yet the accompanying documentation 

does not appear to explain the adjustments made or the grounds for claiming the CRUTEM products are 

reliable for climate research purposes.  

 Neverthetheless, the assumption that the adjustments are adequate is widely held. For example, 

Jun et al. [10] used surface climate data to test some properties of climate models. While they are aware 

of the many faults of the underlying data, they dispensed with them as follows (p. 935): 
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Inhomogeneities in the data arise mainly due to changes in instruments, exposure, station 

location (elevation, position), ship height, observation time, urbanization effects, and the method 

used to calculate averages. However, these effects are all well understood and taken into account 

in the construction of the data set.  

 

In its 4
th
 Assessment Report, as in the previous three, the IPCC also claimed that their data are adjusted to 

remove non-climatic contamination. This forms an essential assumption behind all its key conclusions. 

Global temperature trends were presented in Table 3.2 on page 243 of [7] (Working Group I). The 

accompanying text (page 242) states that the data uncertainties “take into account” biases due to 

urbanization. The Executive Summary to the chapter (page 237) asserts that “…the very real but local 

[urbanization] effects are avoided or accounted for in the data sets used.” The influential Summary for 

Policymakers stated:  

 

“Urban heat island effects are real but local, and have a negligible influence (less than 0.006°C 

per decade over land and zero over the oceans) on these values.”  

 

The 0.006°C is referenced back to [3], where it is merely an assumption about the standard error, not the 

size of the trend bias itself. IPCC Chapter 9 provides the summary of evidence attributing warming to 

greenhouse gases. The problem of surface data contamination is set aside as follows ([7] p. 693): 

 

Systematic instrumental errors, such as changes in measurement practices or urbanisation, could 

be more important, especially earlier in the record (Chapter 3), although these errors are 

calculated to be relatively small at large spatial scales. Urbanisation effects appear to have 

negligible effects on continental and hemispheric average temperatures (Chapter 3).  

 

The citation to IPCC [6] Chapter 3 is uninformative. That chapter does not describe the data adjustments 

and only briefly mentions two studies (McKitrick and Michaels [15] and de Laat and Maurellis [5]) that 

provided evidence of strong correlations between the spatial pattern of warming trends and the spatial 

pattern of industrialization, a correlation not predicted by climate models and an indication of data 

contamination. However the IPCC ([7], p. 244) dismisses these findings on the basis of an unsupported 

claim that the correlations results were spurious artifacts of atmospheric circulation patterns ([7] 2007). 

McKitrick [14] refuted that claim by showing that controlling for atmospheric circulation effects does not 

affect the correlations.   

 

 

1.3 Evidence of Data Problems  

[15] and [16], collectively herein MM04, and [17], herein MM07, tested the adequacy of the data 

adjustments by regressing the observed 1979-2002 trends in 440 surface grid cells on a vector of 

climatological variables (lower tropospheric temperature trends and fixed factors such as latitude, mean 

air pressure and coastal proximity) augmented with a vector of socioeconomic variables, including 

income and population growth, Gross Domestic Product (GDP) per square km, education levels, etc. If 

the data have been adjusted to remove all non-climatic influences then the spatial pattern of warming 

trends should not vary systematically with socioeconomic indicators. MM04 and MM07 both rejected, at 

very high significance levels, independence of the surface temperature field and the socioeconomic 
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variables, thus concluding that the adjusted surface climatic data likely still contain residual influences of 

industrialization on local temperature records. They estimated that the non-climatic effects could account 

for between one-third and one-half of the post-1979 average warming trend over land in the temperature 

data.  

 Schmidt [22] (herein S09) marshaled four arguments to defend the view that, notwithstanding the 

evidence in MM04 and MM07, as well as the de Laat and Maurellis [5] findings, CRUTEM data are 

unbiased. First, he noted that an overall warming trend is observed in numerous post-1980 data sets. 

Second, he argued that the surface temperature field exhibits spatial autocorrelation (SAC), which 

reduces the “effective degrees of freedom” in the sample and biases the test statistics towards over-

rejection of the null (no correlation) hypothesis. Third, he argued that use of the lower troposphere 

satellite series from Remote Sensing Systems [18], denoted RSS) rather than from the University of 

Alabama-Huntsville ([25], denoted UAH), reduces the significance of the coefficients, indicating a lack 

of robustness of the conclusions. Fourth, he argued that the results were spurious on the basis of a 

comparison with results obtained by swapping the observed surface and tropospheric trends with model-

generated data from NASA’s Goddard Institute of Space Studies (GISS) model E, denoted herein as 

GISS-E. These model-generated data are, by construction, uncontaminated by industrialization-induced 

surface changes. Schmidt’s hypothesis was that if the GISS-E data yield the same regression coefficients 

as the observational data in MM07, it would indicate that the seeming correlations between patterns of 

warming and patterns of industrialization were a fluke. This is not what the S09 GISS-E runs showed 

however (as we explain below), but S09 also proposed a more general argument that if any significant 

correlations appeared, this would imply the results of MM07 were spurious.  

 Regarding the first point, it is true that numerous different data sets show an upward trend after 

1980. But the surface data show a relatively large trend compared to data collected from satellites [4], 

which is consistent with the view that there is an upward bias in the land-based data. Turning to the latter 

three points, it is noteworthy that they are all statistical in nature, yet S09 did not conduct any statistical 

testing.  In this paper we develop a regression-based framework that allows direct hypothesis testing to 

shed some light on the unresolved counterclaims. The regression framework we use is common to all 

estimations herein. The unit of measurement is a 5 degree x 5 degree grid cell on the land surface. The 

dependent variable consists of about 440 observations, each one a linear trend through 1979-2002 

monthly temperatures in that grid cell. We refer to this vector as the “trend field.” The independent 

variables include climatic and geographic data for each grid cell that are expected, under the null 

hypothesis, to have explanatory power on the temperature trend vector, and socioeconomic data that are 

not. [14] shows that SAC was not detected in the residuals of the MM07 regression model, although that 

estimation was not maximum likelihood, and a revised version shown in Section 3 below shows 

significant SAC in the MM07 residuals. However on a larger group of updated data sets we find the 

dependent variable is spatially autocorrelated but the regression residuals are not, providing evidence that 

the explanatory model is well-specified. By contrast, when using data generated by GISS-E and other 

climate models (General Circulation Models, or GCM’s), spatial autocorrelation is observed in both the 

dependent variable and the residuals, and the effect is stronger in the residuals than in the dependent 

variable, indicating the explanatory variables do not provide a well-specified model of the GCM-

generated trends. This may indicate that the process that generates the observations is structurally 

different than the processes represented in the climate models.  

 On the second claim, we do find that use of RSS data rather than UAH data weakens the MM07 

coefficients, although removal of a small number of outliers from the data set largely eliminates this 
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contrast. S09 did not present joint significance tests on which the core conclusions were based, and using 

RSS data these still uphold the MM07 findings, albeit at reduced significance.  

 On the third point, S09 reported significant socioeconomic coefficients in a regression using 

GISS-E data. However, we show that the significance of individual coefficients disappears when the 

residuals are treated for SAC, something not done in the S09 analysis. In addition, the coefficients 

estimated on GISS-E data, as well as those estimated on the ensemble means of a much larger suite of 

climate models, are of opposite signs and different magnitudes compared to those estimated on 

observations. This provides further evidence against the view that the socioeconomic correlations are 

spurious, since the coefficient pattern on observed data is significantly different from that on data 

generated by climate models operating on the assumption that local socioeconomic process do not 

influence surface trends. An additional piece of evidence comes from applying the filtering methodology 

of MM07 to the GISS-E data. The methodology uses the regression coefficients from the socioeconomic 

variables to estimate the trend distribution after removing the estimated non-climatic biases in the 

temperature data. On observational data this reduces the mean warming trend by between one-third and 

one-half, but it does not affect the mean surface trend in the model-generated data. Again this is 

consistent with the view that the observations contain a spatial contamination pattern not present in, or 

predicted by, the climate models.  

 Finally, we look at the differences between observed surface trends and the predicted values 

from an ensemble mean of a large suite of GCM’s. If the models explain the observations, and if the 

observations have been filtered to remove socioeconomic influences, these trend differences should be 

independent of the socioeconomic variables. But we find that the differences are highly correlated with 

the socioeconomic indicators, and the coefficients are very close to those estimated on the observed 

trends themselves. This strengthens the argument that the socioeconomic pattern in the data is not 

accounted for by the processes in the climate models.  

 Taken together we find significant evidence against the view that surface climate data are free of 

biases due to socioeconomic development and other inhomogeneities. Instead, measures of 

socioeconomic influence appear to be an essential component of a well-specified model of the spatial 

trend pattern in climate data over land. The coefficient pattern on observational data differs in both sign 

and magnitude from that predicted by climate models as a response to natural oscillations and 

anthropogenic (greenhouse) forcing. Hence we consider the standard interpretation of climatic data to be 

untenable. 

 In the next section we explain the data sets used throughout this paper. In Section 2 we model 

spatial autocorrelation and give detailed results for the data configurations of interest. In Section 3 we 

explore the mismatch between the regression results from model-generated and observed data. Section 4 

presents further specification tests and Section 5 concludes.  

 

 

1.3 Data sets   

Most data sets used herein are taken from MM07 and S09.
1
 Readers should consult both these papers for 

detailed explanations; only a brief summary will be presented herein.   

                                                      
1
 The data are available respectively at http://www.uoguelph.ca/~rmckitri/research/jgr07/jgr07.html and 

http://www.giss.nasa.gov/staff/gschmidt/supp_data_Schmidt09.zip. The combined data sets for this paper are 

available in the SI. 
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 MM07 estimated the regression equation 

 

 iiiiii WATERDSLPDRYPRESSTROP 543210 ββββββθ +++++= iABSLAT6β+  

  iiiiiiii uxgecymp ++++++++ 13121110987 βββββββ  (1)
 

 

where iθ  is the 1979-2002 trend in CRUTEM gridded surface climate data in grid cell i, iTROP  is the 

time trend of Microwave Sounding Unit (MSU)-derived temperatures in the lower troposphere in the 

same grid cell as iθ over the same time interval, iPRESS  is the mean sea level air pressure, iDRY  is a 

dummy variable denoting when a grid cell is characterized by predominantly dry conditions (which is 

indicated by the mean dewpoint being below 0 
o
C), iDSLP  is ii PRESSDRY × , iWATER  is a dummy 

variable indicating the grid cell contains a major coastline, iABSLAT  denotes the absolute latitude of the 

grid cell, ip  is local population change from 1979 to 2002, im  is per capita income change from 1979 to 

2002, iy  is total Gross Domestic Product (GDP) change from 1979 to 2002, ic  is coal consumption 

change from 1979 to 2002, ig  is GDP density (national Gross Domestic Product per square kilometer) as 

of 1979, ie  is the average level of educational attainment, and ix  is the number of missing months in the 

observed temperature series and iu  is the regression residual. Equation (1) was estimated by MM07 

using the generalized least squares routine in Stata 8.0 with corrections for error clustering and 

heteroskedasticity. 

 For ease of notation we will drop the gridcell subscript i when doing so does not create 

ambiguity. Equation (1) explains the spatial pattern of temperature trends using three main variable 

groups: temperature trends in the lower tropospheric layer about 5 km above the surface, fixed 

geographical factors and socioeconomic variables. The geographical variables include latitude, coastal 

proximity, mean air pressure, etc. The socioeconomic variables measure factors that influence data 

quality, land use change, etc. The standard interpretation of climate data is that their effects have been 

filtered out of climatic data products like CRUTEM. 

 Summary statistics for the data are in Table 1. The MM07 data set has 440 records, one for 

every 5x5 degree grid cell over land for which adequate observations were available in the CRUTEM 

data archive to identify a trend over the 1979-2002 interval. Each record contains the linear surface trend 

expressed as degrees C per decade, and the corresponding linear trend from the UAH lower tropospheric 

record of Spencer and Christy [25].  

 The S09 data set comprises surface and tropospheric grid cell trends like those in MM07, 

except the surface trends are from later CRU compilations and the tropospheric trends are from RSS [18]. 

S09 provides trends derived from the CRUTEM2v [8] and CRUTEM3v data sets [3]. For brevity the 

version used in MM07 is denoted CRU and the updated versions used in S09 are denoted CRU2v and 

CRU3v. As is clear in Table 1 these data sets are very similar to one another. CRU3v is the most recent 

but has slightly less spatial coverage compared to CRU and CRU2v (428 cells).  

 The tropospheric data used in MM07 and S09 were at a 2.5x2.5 degree level, one-fourth of the 

5x5 CRU surface grid size, so the top-right tropospheric cell was used. For some of our calculations 

herein we retain the 2.5 degree scale aloft where our intent is to replicate earlier results. Otherwise, in 

order to reconcile the spatial scales between surface and tropospheric gridcells we develop matched 5x5 
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grid cells. We denote the data series in which four tropospheric cells have been combined to yield a 5x5 

grid cell as UAH4 and RSS4.  

 S09 also provided synthetic trends from GISS-E. For a description of this model see CCSP ([4] 

Sct. 2.5.3) and [23]. The climate model was run five times, and the mean over the five runs was taken as 

the ensemble average. The mean trends in the GISS-E surface data are denoted herein as GISSES, and 

the mean trends in the GISS-E lower troposphere data are denoted GISSET. We also obtained the 

ensemble mean trends for 55 model runs used in the IPCC [7] report (see Appendix). These data are 

referred to herein as the all-GCM mean, and the trend vectors are denoted as MSM (surface) and MTM 

(troposphere).   

 The average GISS-E land surface trend is 0.20 
o
C/decade, well below the reported trend of 0.30 

o
C/decade in the CRU3v compilation. The range of trends over land in the all-GCM mean is 0.07 to 0.56 

o
C/decade with a mean of 0.23 

o
C/decade, putting the CRU3v data in the upper half of the model spread. 

The standard deviations of the ensemble mean modeled trends are much smaller (one-third or less) than 

those in the observational data. This is not because the trends are averaged across multiple model runs, 

instead the trends in individual model runs have very small standard deviations to begin with. 

 With a vector of trend terms on both the left- (surface) and right-hand (troposphere) side there 

are 24 possible data combinations: CRU, CRU2v, CRU3v at the surface, UAH, UAH4, RSS and RSS4 

aloft, and GISS and the all-GCM averages. Additionally results can be run with no spatial autocorrelation 

terms, or with corrections on either the error or lagged dependent variables, making 72 possible model 

configurations. Since there are many common results across different specifications we will only report 

those central to our argument, but other results are available on request. For instance, since CRU2v was 

not used in MM07 and has been superseded by CRU3v we will not report CRU2v results, and we will 

generally use UAH4 and RSS4 rather than UAH and RSS. 

 

 

2 Robustness across multiple data sets: the non-SAC case 

 

2.1  Observational data sets 

We begin this section by looking at whether the MM07 results were unique to the particular data 

configuration used therein. Table 2 presents the regression coefficients for Equation (1) using a sequence 

of data configurations. The second column (MM07) replicates the results from the MM07 model, namely 

the CRU-UAH data pair. The next six columns apply, in sequential combinations, CRU2v, CRU3v, 

UAH, RSS, UAH4 and RSS4. The final two columns use the GISS-E and all-GCM ensemble means. 

 Estimations throughout this paper were done using STATA version 8.2, running on a Dell Studio 

laptop with an Intel i7 quad core 64-bit processor. All data and code are available in the supplementary 

information.  

 The socioeconomic coefficient estimates are quite similar across the observational columns (2 

though 9). Use of CRU3v data does not yield much of a change in socioeconomic coefficients compared 

to CRU2v and CRU. Use of RSS data rather than UAH data yields smaller and less significant 

coefficients, though for some reason leaves a greater component to be explained by the latitude variable. 

Use of reconciled gridcell sizes also yields smaller and less significant coefficients compared to the 

2.5x2.5 tropospheric grids. Across all these specifications the coefficient sizes and signs remain 

comparable and the socioeconomic effects taken as a group P(g—c=0) remain jointly significant. The 

largest drop in the coefficient magnitudes is associated with using the CRU3v-RSS4 pair, yet the effect is 
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apparently due to a relatively small number of outliers. The C3/RSS4x column repeats the CRU3v/RSS4 

results with outliers removed. The Ordinary Least Squares “hat matrix” was evaluated, and an 

observation was flagged as an outlier if it exceeded twice the mean diagonal element of the hat matrix 

(see [12] 424—426). In this case 26 observations were removed. This had the effect not only of bringing 

the CRU3v/RSS4 results into line with the results computed with other data configurations, but indeed 

yielding the largest socioeconomic coefficients of any data combination. Figure 1 shows the spatial 

locations of the outlier observations. There is some clustering in the vicinity of the UK and Thailand, but 

the most telling feature is that about half are from small oceanic islands. For these it is difficult to impute 

accurate socioeconomic data (MM07 used the relevant data for the governing country) so these locations 

are most likely to be subject to measurement error. Hence their removal from the data set is a reasonable 

robustness check. Overall, Table 2 shows that the socioeconomic effects seem to be a robust feature of 

the data and are not unduly dependent on selecting one particular data product.  

 

2.2  Model-generated data sets 

 S09 hypothesized that these effects arise from a lucky match between the spatial pattern of 

socioeconomic activity and the spatial pattern of enhanced natural and greenhouse forcing of the climate. 

Since the GCM does not contain a socioeconomic component, if, upon using GISSES and GISSET in 

place of observations in the MM07 regression model, significant coefficients of the same approximate 

size and sign emerge on the socioeconomic variables, then correlations such as those in MM07 could be 

dismissed as coincidental. It is worth quoting the argument in S09 directly to make this point clear. 

 

“There is a relatively easy way to assess whether there is any true significance to these 

correlations. We can take fully consistent model simulations for the same period and calculate 

the distribution of the analogous correlations. Those simulations contain no unaccounted-for 

processes (by definition!) but plenty of internal variability, locally important forcings and spatial 

correlation. If the distribution encompasses the observed correlations, then the null hypothesis 

(that there is no contamination) cannot be rejected. 

 

(S09, p. 2, emphasis added) 

However, as is shown in columns 10 and 11 of Table 2, the regression coefficients estimated on the data 

generated by the GISS-E ensemble and the all-GCM ensemble are quite different from those estimated on 

observational data. Coefficients in Table 2 with a box drawn around them indicate that the estimates on 

both model-generated data sets take the opposite sign to that estimated on all configurations of observed 

data. A box is drawn around all socioeconomic coefficients except coal (c). Additionally, the parameter 

values are much smaller and in almost all cases are insignificant. Consequently we find there is no 

similarity between the socioeconomic coefficients estimated on model-generated data and those 

estimated on observed data, or in other words, the models predict the opposite pattern to that observed in 

the data. 

 With regard to the quoted paragraph, the distributions of the coefficients estimated on GCM data 

do not encompass the coefficients from either the MM07 data set or any other observational grouping in 

Table 2. In the next section this will be shown after re-estimating the model using a correction for spatial 

autocorrelation. Anticipating the findings, for none of the socioeconomic coefficients does the 95% 

Confidence Interval estimated on model-generated data encompass the coefficients estimated on 
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observed data. Consequently the null hypothesis as stated by Schmidt (that there is no contamination) is 

rejected.  

 

 

3 Spatial autocorrelation of the trend field 

 

3.1 Testing framework 

The analysis in the previous section ignores the issue of spatial dependence, so we must now reconsider 

the models taking it into account. Both S09 and Benestadt [2] point out, correctly, that the surface 

temperature field is spatially autocorrelated, and argue that this can, in principle, bias the inferences from 

regressions on the spatial trend field. They both concluded on this basis that the results in MM07 and 

MM04 were unreliable. However neither one formulated the argument as a testable hypothesis, though 

S09 presented variograms of the dependent variable and some independent variables from MM07. It is 

insufficient to observe autocorrelation in a dependent variable and conclude that the inferences from a 

regression model are therefore biased. An additional step in the argument is required, namely a test 

showing that the regression residuals also exhibit SAC. As we will show, they do when model-generated 

data are used, as in S09, but they do not when observational data are used, as in MM07. The contrast is 

important. Inferences concerning the coefficients in a regression model are based on the statistical 

properties of the residuals, not the dependent variable. Thus, the absence of SAC in the residuals of a 

regression model in which the dependent variable is spatially autocorrelated is evidence in support of the 

specification, i.e. that the right hand side variables do have explanatory power. 

 We test for residual spatial dependence as follows. The regression model (1) can be rewritten in 

matrix notation as 

 

  u+= XbT  (2) 

 

where T is a 440x1 vector of temperature trends in each of 440 surface grid cells, X is a 440xk matrix of 

climatic and socioeconomic covariates, b is a kx1 vector of least-squares slope coefficients and u is a 

440x1 residual vector. Spatial autocorrelation in the residual vector can be modeled using 

 

 euu += Wλ  (3) 

 

where λ  is the autocorrelation coefficient, W is a symmetric nn ×  matrix of weights that measure the 

influence of each location on the other, and e is a vector of homoskedastic Gaussian disturbances, (Pisati 

[20]). The rows of W are standardized to sum to one. n equals 440 except in some regressions where grid 

cells are missing, as  noted below. 

 A test of 0:
0

=λH  measures whether the error term in (1) is spatially independent. As argued in 

S09, it is likely the dependent variable is spatially autocorrelated. Anselin et al. [1] point out that if the 

alternative model allows for possible spatial dependence of T, i.e. 

 

 e++= XbZTT φ  (4), 
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where Z is a matrix of spatial weights for T which may not be identical to W, then conventional tests of 

0=λ  assuming an alternative model of the form e+= βXy  will be biased towards over-rejection of the 

null. In this case φ  is a nuisance parameter. The covariance between the score of φ  and the score of λ  

conditional on b must be zero for the conventional Lagrange Multiplier (LM) test of H0: 0=λ  to follow a 

central 2

1
χ  distribution. If the conditional covariance is not zero, the test follows a non-central )(2 δχ  

distribution, where the non-centrality parameter δ  is proportional to the conditional covariance between 

the scores. [1] derives an LM test of 0=λ  robust to nonzero value of the nuisance parameter φ  by 

applying a correction to the score terms. It has substantially superior performance in Monte Carlo 

evaluations compared to the non-robust LM test. All results quoted herein use the robust form of the LM 

test. 

 Autocorrelation can affect either the dependent variable or the residuals or both. Florax et al. [6] 

discuss a sequential testing and estimation regime for models of the form combining equations (3) and 

(4), namely 

 

 eu +++= WXbZTT λφ  (5). 

 

Here φ  is the spatial lag and λ  is the spatial error term. If neither one is significant then a least-squares 

model with no spatial autocorrelation term can be used. If only one of them is significant, then (5) should 

be used retaining only the significant lag term. If both are significant then the one that has a higher 

significance level should be chosen, implying either the spatial lag model (4) or the spatial error model 

(2, 3).  

 Hypothesis tests, and any subsequent parameter estimations, are conditional on the assumed form 

of the spatial weights matrix W in (3). Denote the great circle distance between the grid cell centers from 

which observation i and observation j are drawn as ijg . The weighting function is µ−

ij
g  where µ  

determines the rate at which the relative influence of one cell on adjacent cells declines. The function 

was estimated using a grid search to find the maximum-likelihood value. For observational data 

groupings the likelihood function was maximized at values of µ  between 2.5 and 2.7, whereas for the 

GISS-E and all-GCM model-generated data, the likelihood function was maximized at µ  values of 3.2  

or 3.0 respectively. The optimal exponent values are listed in Table 3. 

 

 

3.2 Spatial Autocorrelation Testing Results 

The Stata command ‘spatwmat’ was used to generate the row-standardized weights and eigenvalues, then 

the command ‘spatdiag’ was used to generate the test scores. Table 3 presents the results of SAC 

hypothesis tests on both the dependent variable and residuals for seven different model configurations. 

The second column (exponent) reports the maximum likelihood value of µ . The next column reports the 

robust LM score for a null hypothesis of no spatial dependence on the dependent variable, while the final 

column reports the robust LM score for the test on the residuals. In each column the corresponding p 

value is shown in parentheses.  

 The first row of results refers to the original configuration in MM07: the CRU gridded trends 

regressed on the UAH tropospheric trends and the rest of the MM07 model variables in Equation (1). In 
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this case the robust LM score is significant for both the dependent variable and the residuals, but much 

more so for the dependent variable, indicating that a spatial lag model is appropriate. The second and 

third rows show the test scores using CRU3v surface data and either UAH4 or RSS4 tropospheric series. 

In both cases the dependent variable lag is significant while the residual lag term is insignificant. Again 

this indicates that the spatial lag model is appropriate, and also indicates that the regression model is 

well-specified in the sense that the SAC is removed from the error terms.  

 The next two rows report the results after substituting in model-generated data on both sides of 

Equation (1). The results change in an interesting way. The no-SAC test in the residuals is now strongly 

rejected, and the ranking of the significance also changes, so that the appropriate estimation model is 

now the spatial error form rather than the spatial lag. This is suggestive of a deficiency in the 

specification of (1), whereby the terms on the right hand side fail to explain the spatial lag pattern for 

model-generated data the way they do when observational data are used. 

 The final two rows refer to a test applied in the next section and will be discussed below. 

 To summarize, in regressions using observational temperature data, the right-hand side terms in 

equation (1) appear to remove the SAC from the regression residuals, leaving an independent error term. 

But the same variables do not remove the SAC from the residuals when data generated by a climate 

model are used. This is evidence that socioeconomic data are a necessary component of a well-specified 

explanatory model of surface temperature trends in the CRU data sets, and this effect arises from factors 

not accounted for by the anthropogenic and natural forcings coded into the GCMs. It also indicates that 

correction for SAC on either the dependent variable or the residuals is required in the regressions, hence 

we will re-do the above regressions applying the appropriate lag models.  

 

3.3  Regression results with SAC controls 

Table 4 presents results in the same format as Table 2. Five new sets of parameter estimates are shown, 

along with the MM07 results in column 2 for comparison. The “+S” in the column heading denotes the 

addition of either a spatial lag or spatial error term, as indicated. Column 3 augments the MM07 result 

with a spatial lag term. Columns 4 and 5 show the results using CRU3v surface data and UAH4 or RSS4 

tropospheric data, respectively, and the last two columns show the results using the GISS-E and the all-

GCM average results, respectively. 

 The pattern observed in Table 2, whereby the observations yield one type of result while the 

model-generated data yield another, shows up again. The socioeconomic coefficients are relatively large 

and significant for all observational data configurations, but vanish in the model data columns. The row 

denoted P(H:g—c=0) reports the P value of the joint significance test on the socioeconomic effects. They 

are jointly highly significant in the observational data columns, albeit less so than in the MM07 case 

where no spatial lag term was included. In the model data columns the socioeconomic effects are jointly 

insignificant.  

 Note that the coefficients in Table 4 from the spatial lag model are somewhat smaller than the 

corresponding coefficients in Table 2 due to the respecification. Equation (4) can be rewritten 

vJXbT +=  where 1)( −−= ZIJ φ , I is an identify matrix and eJv = . Then the coefficient estimates 

from (4) are TJXJXJX TTTT 1)( − , which differ from those of (2), with or without (3), by the extent to 

which J differs from I.  The distance weighting matrix Z has ones along the diagonal and off-diagonal 

terms that go rapidly to zero, hence the influence on b will be, to a simple approximation, )ˆ1/(1 φ− . For 
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the lag estimates shown in Table 4, this implies they should be increased by a factor of approximately 1.4 

to 1.6 to compare against magnitudes with Table 2.  

 Another interesting contrast concerns the tropospheric coefficient (first row). The usual 

expectation from climate modeling studies is that the trend aloft will be slightly stronger than that at the 

surface, but as shown in Table 1, a univariate comparison shows the mean trend in the lower troposphere 

(~0.23) is less than that at the surface (~0.3). This issue has been widely noted: see [4] and [11] for 

instance. However, once the socioeconomic and other effects are controlled in a multivariate regression, 

the coefficient relating the tropospheric trend to the surface goes below unity, indicating a slightly 

amplified trend aloft compared to the surface, consistent with expectations. The mean tropospheric trend 

in the models is slightly above that at the surface (see Table 2) but in the regression model the 

relationship reverses, so that the tropospheric coefficient goes above unity, which is not consistent with 

expectations.   

 

 

3.4 Do GCM’s predict the observed temperature-industrialization correlation pattern? 

Returning to Schmidt’s [22] argument that the distribution around coefficients estimated on model-

generated needs to encompass those estimated on observed data, Table 5 lists the 95% Confidence 

Intervals for the socioeconomic coefficients estimated on either GISS or all-GCM ensemble mean data, 

along with four columns of indicator variables. An indicator takes a value of 1 if the coefficient estimated 

on observed data is within the comparison CI or 0 if it is not. As is shown, all indicator variables take a 

zero value, indicating that in no case do the coefficients estimated on observed data fall within the 

distribution of coefficients predicted by the models. Table 5 reports results using SAC-corrected 

estimates, but the results would be the same using non SAC-corrected results. Hence the null hypothesis 

in the form stated by S09, namely parameter overlap implying an absence of contamination, is rejected. 

 The spatial autocorrelation results in the previous section, and the mismatch between coefficients 

estimated on observed and model-generated data, point to the likely existence of a non-climatic 

contamination pattern in the observed surface trend data. Further evidence on this point is obtained by 

repeating the filtering experiment of MM07 on the GISS-E and all-GCM data. The MM07 method sets 

the contaminating influences to zero and assumes each country has equivalent measurement resources as 

the United States. Since the climate model does not contain any contaminating processes or quality-

control variations we should not expect much difference between the raw data from the models and that 

obtained by applying the MM07 method for removing socioeconomic effects.  

 Table 6 shows the results. The first row repeats the findings in MM07 for comparison. The 

second column shows the mean surface trend, the third column shows the troposphere trend (using either 

UAH or RSS data, as indicated for that row), the fourth column shows the mean filtered surface trend 

and the final column shows the mean filtered surface trend weighting each gridcell by the cosine of 

latitude to adjust for declining gridcell areas in higher latitudes. In MM07 the filtering step reduced the 

surface trend by about one-third. The next two rows apply the method to the CRU3v and UAH4/RSS4 

data, with similar results, albeit slightly less using RSS data. The final two rows show that when applied 

to model-generated data the adjustments are, as expected, quite small, and actually raise the GISS-E trend 

slightly rather than reducing it. This is consistent with the view that the models do not contain processes 

that are, by contrast, present in the observational data, and which are explained by the socioeconomic 

variables.  
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 Finally, to investigate the ability of the all-GCM ensemble to explain the surface trend pattern 

we took the differences between the observed surface trends (CRU3v) and the all-GCM mean surface 

trends and examined if the differences can be explained by the socioeconomic variables in equation (1). 

To the extent the GCM ensemble mean explains the projected surface effects of greenhouse gases and 

other known climate forcings, the differences with observations should be unsystematic, as long as the 

observational data are truly generated by processes that are fully represented by the current suite of 

climate models. Table 7 shows the result of regressing the trend differences on the right-hand side 

variables in Equation (1) except x since there are no missing cells in the GCM grid. Spatial lag terms are 

included in all regressions. The second column (C3/U4+S) shows the results using CRU3v as the 

dependent variable and UAH4 as the tropospheric measure, i.e. the same as Table 4 column 4. Column 3 

then replaces the dependent variable with the observation-model differences. The socioeconomic 

coefficients retain their size and significance levels. The next two columns repeat the experiment using 

RSS4 data. Again the socioeconomic coefficients retain their size and joint significance. This implies 

that if we take the observational trends in gridded surface data and subtract that portion explained by 

climate models, the remaining portion exhibits the same pattern of correlations to socioeconomic 

variables as did the original observations. Consequently the original coefficients cannot be attributed to 

the forcings and processes as represented in climate models, and can instead be considered as likely due 

to the non-climatic, contaminating influences measured by the socioeconomic variables. 

 

 

4 Further specification tests 

MM07 presented a series of specification tests using the UAH data. We repeated all of them using 

CRU3v and RSS4. The results closely follow those reported in MM07. Details are available on request, 

and can be summarized as follows. 

 

• The RESET test does not reject a null hypothesis of no un-modeled residual nonlinearity (P = 0.241). 

• The Hausman test does not reject a null hypothesis of no endogeneity bias (P = 0.999). 

• The outlier test (described in Section 3) flags 26 observations as influential. When these are removed 

the individual and joint socioeconomic coefficient tests become more significant, yet we do not reject 

a null hypothesis that the coefficient vectors with and without the outliers are equivalent (P = 0.278). 

• Coefficient results are individually and jointly significant in rich countries but not poor countries, 

and in economies with growing but not declining incomes.  

• After removing a randomly-selected third of the data set and re-estimating the model, the prediction 

of the withheld sample scatters along a 45-degree line with the observed values. In 500 repetitions, a 

regression of the predicted and observed values has a constant of 0.011 and a slope of 0.961, and a 

test of a perfect fit (constant = 0, slope = 1) obtains an average P value of 0.407, i.e. does not reject 

on average.  

 

 

 The SAC tests reveal that one of the specification tests in MM07 was done incorrectly. In 

Section 4.6 of MM07, an alternative estimation is presented in which the surface trends were replaced by 

the UAH-derived lower tropospheric trends. Had the socioeconomic coefficients retained their size and 

significance it would provide evidence that the surface results might be spurious. Some variables, such as 

growth in coal consumption (c) and population growth (p) can yield regional changes that affect the 
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lower troposphere. One mechanism is the changing atmospheric aerosol load (Li et al. [13]); another is 

induced changes in regional precipitation downwind from major cities (Shepherd et al. [24]). Table 3 of 

MM07 shows the socioeconomic coefficients generally lose size and significance, as expected, although 

an anomalous result emerges whereby the missing variable count in surface data  (denoted x) becomes 

significant. Only 5% of the cells in the sample have at least one missing month. The analysis in MM07 

suggests that the occurrence of missing data is possibly acting as a proxy for relatively moist, storm-

prone regions, but in any case x is small and insignificant in the main models so its role is unlikely to bias 

the conclusions. 

 However, the tropospheric trends vector is spatially autocorrelated, so the regression equation 

needs to be augmented with an SAC correction, which was not done in MM07. Table 8 shows the results 

of replacing the dependent variable with the tropospheric trends and regressing on the remaining right-

hand side variables. The second column reproduces the original regression results from MM07 for 

comparison, and the next four columns show the results after applying the SAC correction using UAH4 

and RSS4, each shown with spatial lag and spatial error terms. The preferred model is somewhat 

ambiguous. The robust LM score indicates the spatial lag correction is more appropriate, but when both 

are estimated, the spatial error coefficient is more significant. However, nothing much depends on the 

choice in this case.  

 As in MM07, x changes sign and in one case (RSS4 with a spatial lag model) acquires 

significance, indicating that in this regression it is likely acting as a proxy for some unrelated spatial 

pattern. In the full regression x is never significant (see Tables 2 and 4), so its spurious effect does not 

drive any results in the rest of the analysis. Regarding the other coefficients, there is a plausible 

attenuation of the surface effects pattern, more so using UAH4 data than RSS4. In three cases the 

population growth measure falls to between one-quarter and one-sixth its size in the MM07 case (and 

one-half to one-third the size compared to the results in Table 7) but retains significance. This, in turn, 

carries over to the joint significance test in the RSS4 case, though not in the UAH4 case. The joint 

significance of the RSS4 test could be taken as support for the view that the patterns in our data are 

spurious. However, the effect appears to be mainly related to population growth, and in relation to this 

variable a regional effect in the lower troposphere is not implausible. Also, all the other specification 

tests up to this point, including the model-observation contrast, consistently support the view that the 

socioeconomic effects are actual features of the data, rather than fluke correlations.  

 The results in Table 8 are close enough to our expectations to allow us to maintain our 

interpretations of the rest of the analysis with respect to the complete model estimations and the 

comparison of modeled versus observational data. However, to provide a decisive test against spurious 

results will require development of an updated data base that combines both time series and cross-

sectional data on a gridcell basis. This is planned as a subsequent development of this research. 

 

 

5 Conclusions 

We have examined the question of whether spatial trend patterns in surface temperature data can be 

explained in part by non-climatic, socioeconomic processes of the kind that are supposed to have been 

filtered out of the gridded data products. We have shown that a coefficient pattern connecting 

temperature trends to indicators of industrialization is robust across a wide range of data configurations 

in the surface and lower troposphere, but is absent in climate mode-generated data. The failure to 
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reproduce this pattern in models indicates that it is not a natural feature of the climate system nor a 

response to greenhouse gas-induced forcing.  

 One strand of argument against earlier findings on this issue was that spatial autocorrelation of 

the temperature field reduces the effective number of degrees of freedom, biasing significance 

calculations. We have estimated robust SAC test statistics and have shown that while the trend field is 

spatially autocorrelated, SAC is not found in the residuals when updated observations are used, but is 

strongly present when model-generated data are used. This again points to a qualitative difference 

between observations and models that may be explained by the patterns of socioeconomic development. 

After re-estimating our results with the appropriate corrections for spatial dependence we find the 

socioeconomic coefficients remain significant in observations, but, again, disappear in model-generated 

data. Also, we find no overlap between the implied distribution of coefficients from estimations on 

model-generated data and coefficients estimated on observed data, refuting a key conjecture in Schmidt 

[22].   

 Therefore, our overall finding is that the strong explanatory influence of socioeconomic effects 

on the pattern of climatic trends over land cannot be explained away as spurious effects due to spatial 

autocorrelation, data selection or fluke correspondence with known atmospheric circulation patterns. In 

the absence of any alternative explanation we conclude with some confidence that the temperature data 

being used for most modern analysis of climate change is inadequately filtered to remove known 

contamination patterns related to urbanization and other socioeconomic influences. The counterfactual 

experiments in Table 6 indicate that the contamination yields an overall warm bias over land.  

 The data set presented in MM07 includes trends up to the end of 2002, and includes coarse 

resolution of some socioeconomic variables at the national level. Further investigation of the potential 

surface climatic data problems we have identified herein could involve a reconstruction of the MM07 

data base using updated socioeconomic and climatic variables, use of cross-sectional time series (panel) 

regression rather than trend fields, and use of regional, rather than national, socioeconomic data where 

available.  
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Var Definition Obs Mean Std. Dev. Min Max 

CRU 

 

Surface temperature trend 

from MM07 

440 0.302 0.257 -0.700 1.020 

CRU2v CRUTEM version 2 trends 

from S09 

440 0.296 0.250 -0.699 1.015 

CRU3v CRUTEM version 3 trends 

from S09 

428 0.303 0.253 -0.717 1.042 

GISS-ES Surface gridcell trend from 

GISS model (S09) 

440 0.196 0.113 -0.127 0.958 

MSM Mean surface gridcell trend 

from all GCM’s  

440 0.231 0.072 0.071 0.564 

RSS Lower tropospheric gridcell 

trend from RSS 

434 0.237 0.134 -0.085 0.684 

UAH Lower tropospheric gridcell 

trend from UAH 

440 0.232 0.184 -0.197 0.683 

GISS-ET  Lower tropospheric gridcell 

trend from GISS model 

(S09) 

440 0.222 0.077 -0.022 0.458 

MTM 

 

Lower tropospheric gridcell 

trend from all GCM’s 

440
 

0.234 0.030 0.131 0.314 

Water 

 

Grid cell contains a coast 

line 

440 0.6045 0.4895 0 1 

Abslat Absolute latitude 440 40.602 17.953 2.5 82.5 

       

g 

 

1979 Real National GDP per 

sq km in millions 

440 0.297 0.600 0.001 3.002 

e 

 

Literacy +Post-secondary 

education rates 

440 106.5 26.20 11.6 144.2 

x 

 

# missing months in grid cell 

temperature record 

440 0.764 2.552 0 24 

p % growth in population* 440 0.279 0.209 -0.069 1.235 

m 

 

% growth in real average 

income* 

440 0.380 0.614 -0.790 2.147 

y 

 

% growth in real national 

GDP** 

440 0.771 0.839 -0.669 3.003 

c 

 

% growth in coal 

consumption* 

440 1.016 4.056 -1 39.333 

Rich 

 

1999 real income > median 440 0.493 0.501 0 1 

Grow 

 

1999 real income > 1979 real 

income 

440 0.761 0.427 0 1 
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Table 1: Model Variables. Definitions discussed further in MM07 and S09. *over the interval 1979 to 

1999. **Over the interval 1980 to 2000. % Changes should be multiplied by 100, e.g. mean population 

growth is 27.9%.  
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Variable MM07 C2/UAH C2/RSS C3/UAH C3/RSS C3/UAH4 C3/RSS4 C3/RSS4x GISS GCM 

trop 0.8631 0.8323 0.9872 0.8146 0.9627 0.9330 0.9538 0.9263 1.2212 1.4649 

 (8.62) (8.58) (14.36) (8.80) (13.84) (11.03) (8.77) (7.49) (14.73) (10.87) 

slp 0.0044 0.0043 0.0024 0.0058 0.0039 0.0071 0.0059 0.0043 -0.0017 -0.0011 

 (1.02) (1.03) (0.66) (1.43) (1.11) (1.92) (1.67) (1.33) (1.06) (1.26) 

dry 0.5704 1.6771 0.1986 1.5010 0.2125 4.5837 4.3175 2.8723 1.1352 2.5261 

 (0.10) (0.33) (0.04) (0.30) (0.04) (1.01) (1.01) (0.52) (0.54) (2.04) 

dslp -0.0005 -0.0016 -0.0001 -0.0014 -0.0001 -0.0044 -0.0042 -0.0027 -0.0011 -0.0024 

 (0.09) (0.31) (0.03) (0.28) (0.03) (0.99) (0.99) (0.51) (0.55) (2.01) 

water -0.0289 -0.0293 -0.0169 -0.0240 -0.0117 -0.0278 -0.0161 -0.0155 -0.0501 -0.0229 

 (1.37) (1.37) (0.68) (1.06) (0.46) (1.29) (0.66) (0.56) (5.33) (3.30) 

abslat 0.0006 0.0010 0.0028 0.0014 0.0033 0.0005 0.0041 0.0040 0.0010 0.0022 

 (0.51) (0.82) (2.28) (1.22) (2.65) (0.54) (3.00) (2.54) (1.97) (4.90) 

           

g 0.0432 0.0450 0.0444 0.0449 0.0446 0.0383 0.0401 0.0383 -0.0107 -0.0076 

 (3.36) (3.66) (3.03) (4.01) (3.27) (3.44) (2.58) (1.78) (1.53) (1.76) 

e -0.0027 -0.0026 -0.0025 -0.0029 -0.0028 -0.0028 -0.0025 -0.0031 0.0005 0.0000 

 (5.14) (5.32) (4.73) (4.41) (4.10) (4.32) (3.73) (4.75) (2.66) (0.23) 

x 0.0041 0.0019 -0.0003 0.0011 -0.0021 0.0016 0.0005 0.0006   

 (1.66) (0.73) (0.12) (0.42) (0.95) (0.71) (0.20) (0.12)   

p 0.3839 0.3665 0.1513 0.3524 0.1450 0.2916 0.2085 0.3969 -0.0919 -0.0118 

 (2.72) (2.67) (1.04) (2.52) (0.97) (2.18) (1.55) (2.71) (1.54) (0.38) 

m 0.4093 0.3844 0.2663 0.3732 0.2578 0.2810 0.2595 0.5553 -0.1191 -0.0444 

 (2.39) (2.33) (1.52) (2.19) (1.42) (1.68) (1.50) (3.00) (1.55) (1.18) 

y -0.3047 -0.2839 -0.2160 -0.2804 -0.2139 -0.2178 -0.1944 -0.4300 0.0791 0.0320 

 (2.22) (2.15) (1.55) (2.06) (1.48) (1.63) (1.42) (2.91) (1.33) (1.07) 

c 0.0062 0.0060 0.0076 0.0063 0.0079 0.0057 0.0071 0.0084 0.0004 0.0010 

 (3.45) (3.46) (3.77) (3.38) (3.62) (2.93) (3.58) (1.92) (0.75) (2.13) 

Constant -4.2081 -4.1522 -2.2291 -5.5546 -3.7704 -6.9317 -5.8808 -5.3457 1.5622 0.9162 

 (0.96) (0.97) (0.60) (1.36) (1.05) (1.84) (1.63) (1.23) (0.99) (1.03) 

           

P(H:g—c=0) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 
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N 440 440 434 428 422 428 428 402 440 440 

R
2 0.53 0.53 0.52 0.53 0.52 0.56 0.54 0.55 0.68 0.77 

LLF 139.22 151.75 145.50 142.64 135.83 157.10 147.54 135.35 584.97 819.27 

Table 2: Regression results from a group of data configurations.  MM07 shows results from original data set (McKitrick and Michaels 2007). 

Next seven columns show combinations of CRUv2 and CRUv3 surface data sets (denoted C2 and C3 respectively) and the UAH and RSS lower 

tropospheric data series on the original gridcell basis or the reconciled 5x5 basis (UAH4, RSS4). C3/R4x is CRU3v/RSS4 configuration with 

outliers removed. Final two columns show regressions using GISS-E and all-GCM-generated surface and tropospheric data. Numbers in 

parentheses are absolute t-statistics. All columns reflect corrections for clustered errors and heteroskedasticity. Bold denotes significant at 95% 

confidence. A box around a coefficient in the final two columns indicates that the sign on model-generated data was opposite to that on estimates 

from all observational data sets. P(H:g—c=0) is prob value of test that coefficients g–c are jointly zero. Variable x is dropped in GISS-E and 

GCM regressions since there are no missing surface values.  
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Estimation Model  

Weighting 

Function 

Dependent 

Variable 

 

Residuals 

CRU: UAH + MM07 6.2−

ij
g  22.231 (0.000) 4.288 (0.038) 

    

CRU3v: UAH4 + MM07 7.2−

ij
g  9.970 (0.002) 1.974 (0.160) 

    

CRU3v: RSS4 + MM07 5.2−

ij
g  13.429 (0.000) 1.297 (0.255) 

    

GISSES: GISSET + MM07 2.3−

ij
g  41.546 (0.000) 116.170 (0.000) 

    

MSM: MTM + MM07 0.3−

ij
g  4.376 (0.036) 56.991 (0.000) 

    

CRU3v–MSM: UAH4 + MM07 7.2−

ij
g  7.665 (0.006) 1.945 (0.163) 

    

CRU3v–MSM: RSS4 + MM07 7.2−

ij
g  11.828 (0.001) 2.503 (0.114) 

TABLE 3. Spatial autocorrelation tests for regression models. Estimation model described as [surface 

measure]: [tropospheric measure] + MM07. Dependent variable is 1979-2002 trend in gridded surface 

data, using CRU series as in McKitrick and Michaels (2007), or CRU3v update from Brohan et al [3], or 

model-generated (GISSES, MSM). Tropospheric measure is either UAH or RSS observational trends (‘4’ 

denotes expanded to 5x5 gridcell), or model-generated (GISSET, MTM). MM07 denotes other dependent 

variables from McKitrick and Michaels (2007) model, namely SLP through c in Equation (1). Weighting 

Function refers to form of spatial dependence, where 
ij

g  denotes great circle distance between grid cells 

i and j and the exponent is the result of the gridsearch routine described in the text.. Third and fourth 

columns: each entry shows robust LM autocorrelation parameter and associated P value of hypothesis 

that it equals zero. Bold denotes hypothesis rejected at 5% significance.  
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Variable MM07 MM07+S C3/U4+S C3/R4+S GISS+S GCM+S 

trop 0.8631 0.6058 0.7269 0.6976 1.7856 1.5859 

 (8.62) (7.63) (9.04) (8.05) (10.84) (11.07) 

slp 0.0044 0.0037 0.0061 0.0051 -0.0044 -0.0024 

 (1.02) (1.35) (2.16) (1.83) (2.57) (2.52) 

dry 0.5704 1.7438 4.7378 4.7540 -0.1545 1.1861 

 (0.10) (0.50) (1.37) (1.36) (0.08) (1.00) 

dslp -0.0005 -0.0017 -0.0046 -0.0046 0.0001 -0.0011 

 (0.09) (0.48) (1.35) (1.34) (0.08) (0.99) 

water -0.0289 -0.0287 -0.0287 -0.0209 -0.0179 -0.0129 

 (1.37) (1.53) (1.56) (1.12) (2.58) (4.18) 

abslat 0.0006 0.0004 0.0004 0.0030 0.0016 0.0030 

 (0.51) (0.45) (0.45) (3.06) (2.84) (7.27) 

       

g 0.0432 0.0294 0.0298 0.0285 0.0005 0.0006 

 (3.36) (2.25) (2.44) (2.57) (0.08) (0.19) 

e -0.0027 -0.0015 -0.0019 -0.0014 0.0002 -0.0001 

 (5.14) (2.67) (3.58) (2.73) (0.71) (0.97) 

x 0.0041 0.0023 0.0002 -0.0009   

 (1.66) (0.78) (0.07) (0.29)   

p 0.3839 0.2967 0.2403 0.1682 -0.0319 0.0230 

 (2.72) (2.55) (2.07) (1.44) (0.60) (1.14) 

m 0.4093 0.2472 0.1775 0.1331 -0.0386 0.0262 

 (2.39) (1.91) (1.36) (1.02) (0.74) (1.00) 

y -0.3047 -0.1826 -0.1386 -0.0989 0.0203 -0.0239 

 (2.22) (1.79) (1.35) (0.97) (0.54) (1.25) 

c 0.0062 0.0037 0.0040 0.0045 0.0002 0.0011 

 (3.45) (2.04) (2.19) (2.43) (0.29) (2.92) 

Constant -4.2081 -3.6601 -6.0249 -5.1528 4.2465 2.2039 

 (0.96) (1.31) (2.11) (1.83) (2.45) (2.32) 

       

Spatial lag  0.4204 0.3054 0.3996   

  (5.40) (3.84) (5.11)   

Spatial error     0.8463 0.8882 

     (16.74) (26.34) 

       

P(H:g—c=0) 0.0000 0.0037 0.0005 0.0050 0.5937 0.0709 

       

N 440 440 428 428 440 440 

R
2 0.53 0.57 0.58 0.57 0.64 0.73 

LLF 139.22 154.58 164.98 159.90 660.27 961.52 
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Table 4: Regression results for five data configurations applying corrections for spatial 

dependence.  Notation as for Table 2. All columns reflect corrections for spatial autocorrelation, 

clustered errors and heteroskedasticity. Spatial lag: model augmented with spatially lagged dependent 

variable. Spatial error: model augmented with spatially lagged residual (see text for explanation). Bold 

denotes significant at 95% confidence. P(H:g—c=0) is prob value of test that coefficients g–c are jointly 

zero. R
2
 is squared correlation between observed and predicted values. Variable x is dropped in GISS-E 

and GCM regressions since there are no missing surface values.  
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  CRU3v/UAH4 

Compared to 

CRU3v/RSS4 

Compared to 

 

Variable GISS 95% CI GISS GCM GISS GCM GCM 95% CI 

g -0.0135 to 0.0146 0 0 0 0 -0.0059 to 0.0071 

e -0.0004 to 0.0008 0 0 0 0 -0.0004 to 0.0001 

p -0.1389 to 0.0752 0 0 0 0 -0.0174 to 0.0634 

m -0.1435 to 0.0663 0 0 0 0 -0.0260 to 0.0785 

y -0.0542 to 0.0949 0 0 0 0 -0.0621 to 0.0143 

c -0.0011 to 0.0015 0 0 0 0  0.0003 to 0.0019 

Table 5. Comparison of coefficient magnitudes between model runs and observational runs. Middle 

four columns show results of using CRU surface data and UAH satellite data), and CRU3v/RSS pairing, 

compared against GISS and all-GCM ensembles respectively. Entry is “0” if coefficient estimated on 

observed data falls outside 95% confidence interval (CI) for coefficient estimated using indicated model 

data. Second column shows 95% CI around socioeconomic coefficients from GISS regression, seventh 

column shows same for all-GCM ensemble mean.  
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MM07 method  

using: 

 

Surface 

 

Troposphere 

 

Filtered Surface 

Weighted 

Filtered Surface 

CRU & UAH 0.302 0.232 0.205 0.173 

CRU3v & UAH4 0.303 0.247 0.202 0.166 

CRU3v & RSS4 0.303 0.236 0.226 0.192 

GISS data 0.196 0.222 0.211 0.209 

all-GCM data 0.231 0.234 0.234 0.218 

Table 6: Filtering results using various observational and model-generated data sets. Each table 

entry shows the mean trend in the global sample. The Surface trend is the mean trend in the surface 

observations for that row, likewise for the Troposphere trend. The fourth column shows the results from 

applying the filtering method from MM07 without gridcell cosine-weighting, and the final column shows 

the results with cosine-weighting applied to each gridcell. original MM07 results.  
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Variable C3/U4+S Diff-GCM C3/R4+S Diff-GCM 

trop 0.7269 0.6804 0.6976 0.6377 

 (9.04) (8.57) (8.05) (7.64) 

slp 0.0061 0.0051 0.0051 0.0042 

 (2.16) (1.75) (1.83) (1.49) 

dry 4.7378 2.3197 4.7540 2.1985 

 (1.37) (0.63) (1.36) (0.61) 

dslp -0.0046 -0.0023 -0.0046 -0.0022 

 (1.35) (0.63) (1.34) (0.61) 

water -0.0287 -0.0087 -0.0209 -0.0008 

 (1.56) (0.48) (1.12) (0.04) 

abslat 0.0004 -0.0006 0.0030 0.0019 

 (0.45) (0.73) (3.06) (2.03) 

     

g 0.0298 0.0343 0.0285 0.0337 

 (2.44) (2.61) (2.57) (2.88) 

e -0.0019 -0.0015 -0.0014 -0.0011 

 (3.58) (2.97) (2.73) (2.24) 

x 0.0002  -0.0009  

 (0.07)  (0.29)  

p 0.2403 0.2524 0.1682 0.1865 

 (2.07) (2.11) (1.44) (1.54) 

m 0.1775 0.2405 0.1331 0.2037 

 (1.36) (1.78) (1.02) (1.50) 

y -0.1386 -0.1749 -0.0989 -0.1425 

 (1.35) (1.65) (0.97) (1.35) 

c 0.0040 0.0036 0.0045 0.0042 

 (2.19) (2.00) (2.43) (2.33) 

     

Constant -6.0249 -5.1686 -5.1528 -4.3729 

 (2.11) (1.75) (1.83) (1.52) 

     

Spatial lag 0.3054 0.2874 0.3996 0.3620 

 3.84 3.40 5.11 4.69 

     

P(H:g—c=0) 0.0005 0.0031 0.0050 0.0044 

     

N 428 428 428 428 

R
2 0.58 0.49 0.57 0.48 

LLF 164.98 162.90 159.90 155.51 

Table 7: Results as for Table 4 using differences between observed and GCM-generate trends in 

each gridcell. For notation see notes to Table 4. 2
nd

 and 4
th
 columns taken from Table 4 for comparison 
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purposes. 3
rd

 and 5
th
 columns: dependent variable is CRU3v trends minus trends generated by all-GCM 

average. Absolute t statistics in parentheses. Bold denotes significant at 5%.  
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Variable MM07 UAH4 UAH4 RSS4 RSS4 

uah 0.8631     

 (8.62)     

slp 0.0044 0.0114 0.0004 0.0098 0.0004 

 (1.02) (3.97) (0.41) (3.75) (0.51) 

dry 0.5704 1.3590 -1.9207 -1.6802 -1.9530 

 (0.10) (0.44) (1.61) (0.64) (1.84) 

dslp -0.0005 -0.0013 0.0019 0.0017 0.0019 

 (0.09) (0.44) (1.62) (0.65) (1.85) 

water -0.0289 0.0030 0.0091 0.0049 0.0095 

 (1.37) (0.45) (1.80) (0.72) (1.77) 

abslat 0.0006 0.0019 0.0007 0.0008 0.0005 

 (0.51) (1.53) (2.45) (0.75) (2.20) 

      

g 0.0432 -0.0091 0.0034 -0.0016 0.0049 

 (3.36) (0.67) (0.68) (0.12) (0.91) 

e -0.0027 0.0001 0.0001 -0.0004 0.0000 

 (5.14) (0.42) (0.79) (1.69) (0.20) 

x 0.0041 0.0006 -0.0015 -0.0003 -0.0022 

 (1.66) (0.84) (1.48) (0.35) (2.50) 

p 0.3839 0.0451 0.0599 0.0755 0.0948 

 (2.72) (1.57) (2.32) (3.00) (3.95) 

m 0.4093 0.0513 0.0558 0.0336 0.0522 

 (2.39) (1.12) (1.58) (0.78) (1.62) 

y -0.3047 -0.0370 -0.0416 -0.0265 -0.0418 

 (2.22) (1.11) (1.53) (0.84) (1.76) 

c 0.0062 -0.0005 0.0006 -0.0003 0.0005 

 (3.45) (0.46) (1.16) (0.38) (1.01) 

Constant -4.2081 -11.4593 -0.4255 -9.7904 -0.4333 

 (0.96) (3.97) (0.45) (3.70) (0.54) 

      

Spatial error  0.9474  0.9185  

  (77.04)  (51.68)  

Spatial lag      

   0.9196  0.8949 

   (61.85)  (45.02) 

      

P(H:g—c=0) 0.0000 0.6581 0.1287 0.0116 0.0002 

      

N 440 440 440 440 440 

R
2 0.53 0.23 0.94 0.12 0.879 

LLF 139.22 647.65 639.52 617.32 611.62 
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Table 8: Results from replacing the dependent variable with the tropospheric trends and 

regressing on the remaining variables. First column: from MM07, UAH data, no correction for SAC. 

2
nd

 and 3
rd

 columns: RSS and UAH data respectively, SAC correction applied. Absolute t statistics 

underneath coefficients, bold denotes significant at 5%.  
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Figure 1: Locations of outliers referenced in Table 2 column 9. 
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APPENDIX:  

The all-GCM data was constructed using 55 runs from 22 GCMs used in the IPCC [7] report. The archive 

is at http://www-pcmdi.llnl.gov. HadCM3 wasn't used because it did not represent its data in the required 

IPCC pressure levels. MUIB ECHO G wasn't processed because no atmospheric temperature data was 

available, thus synthetic MSU brightness temperatures couldn't be calculated. 

 The calculation of brightness temperature was done using the same algorithm and weighting 

functions implemented in Santer et al. ([21] 2008). Trend fields in degrees C/decade  for the surface and 

lower tropospheric temperature were calculated as follows. 

1. Extract all data from Jan 1979 - Dec 2002. 

2. Compute the climatology for the same period. 

3. Subtract the climatology from the original data. 

4. Calculate the trend field for each grid point only if all the data points are valid. 

5. Collect only the trends that correspond to the MM07 set of lat/lon coordinates. 

6. Multiply the resulting annual trends by 10 to obtain decadal trends 

 There was no missing data for the surface temperature variable, but there was some missing 

data in some runs for the TLT brightness temperature. This is because the models originally didn't 

represent the atmospheric temperature on the same set of pressure levels that the IPCC mandated. 

Interpolation was required and this resulted in some missing data points in the lower atmosphere. To 

calculate the brightness temperature, the atmospheric temperature profile was multiplied by a set of 

weights specific to a given atmospheric layer (TLT, TMT, TLS). The weighted temperatures were then 

added up and divided by the sum of weights that correspond to non-missing temperature values. If this 

total weight did not equal or exceed 0.5 or 50%, then the brightness temperature at that grid point was 

flagged as missing. 

 

 


