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more likely to occur than the upper half, and the top quartile are particularly difficult to justify. 
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LONG-TERM FORECASTING OF GLOBAL CARBON DIOXIDE EMISSIONS: 
REDUCING UNCERTAINTIES USING A PER-CAPITA APPROACH 

 

1 INTRODUCTION 

 
Concern about the buildup of carbon dioxide (CO2) in the atmosphere, and its connection 

to global climate change, has led to calls for emissions policies on a sufficiently large scale 

as to dwarf most other economic issues [e.g. Stern, 2006]. The surrounding debates make 

reference to multi-decadal projections of global CO2 emissions, which have long been 

characterized by large uncertainties. An early suite of forecasts prepared for the U.S. 

National Academy of Sciences [Nordhaus and Yohe, 1983] projected a range of annual 

emissions from 0.4 to 117 Gigatonnes Carbon-equivalent (GtC) as of 2100.  Nearly a decade 

later, simulations from a suite of dynamic models in a survey paper for the OECD [Dean and 

Hoeller, 1992] yielded a range of annual emission paths over the 21st century with end-of-

century peaks ranging from about 20 to 40 GtC.  The same OECD study mentions other 

published studies with forecasts as low as 5 GtC to as high as 60 GtC.  The range has 

narrowed little since then.  A study using Hotelling price dynamics (that is, relative price 

changes arising from resource depletion) to model energy substitution paths yielded a 

lower bound of zero [Chakravorty et al., 1997].  Several studies have suggested peak mid-

century annual emissions in the neighborhood of 15 to 25 GtC [Schmalensee, 1998; 

Webster et al., 2002].  The forty emission scenarios used in the 2001 and 2007 Assessment 

Reports of the Intergovernmental Panel on Climate Change (IPCC) [IPCC, 2001, 2007], 
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initially outlined in the IPCC’s Special Report on Emission Scenarios (SRES) (IPCC, 2000), 

spanned 4 to 38 GtC for 2100.  

Large-scale economic modeling does not appear to narrow the range of emissions 

scenarios by much due to empirical uncertainty over some key modeling parameters.  For 

instance, small changes in the assumed annual rate of “autonomous energy efficiency 

improvement” can halve (or double) peak emissions due simply to the effect of 

compounding over a century [Dean and Hoeller, 1992]. Yet there is no agreed-upon 

measure of the most accurate value. Out-of-sample conjectures about substitution 

elasticities among fuel and factor types can also play a large role despite the absence of 

reliable empirical guidance.  Modeling results are also sensitive to conjectures about the 

cost and feasibility of potential emissions-free backstop technologies that might become 

available decades from now, but such conjectures remain highly speculative [see Hoffert et 

al., 2002, for an overview]. 

In this paper we propose a way of evaluating the relative probabilities of long term 

emission forecasts by focusing on per capita, rather than total, trends. Since population 

forecasts, at least to 2050, are constrained by long term demographic trends, they are not 

as variable as, say, GDP forecasts. Therefore, to the extent we can say something about the 

likelihood of a given per capita emissions forecast, it would help us rank the likelihood of 

corresponding total emissions forecast. Our argument has the following three elements. 

(a) Population forecasts to the mid-century are constrained by demographic trends and 

are typically between 8 and 11 billion persons. The United Nations (2004, UN hereafter) 

medium projection is 9.3 billion persons by 2050 and the IPCC median projection is 8.7 
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billion persons. 1 While forecasts out a century or more tend to be more uncertain, those to 

the mid-century mark do not show a very wide spread since the demographic transitions 

underway around the world (declining birth rates and increasing life expectancy) are well-

established (Gilland, 1995).  

(b) The range of probable future per capita emission rates can be characterized with more 

confidence than has hitherto been recognized. The global per capita emissions level has 

remained bounded between about 1.1 and 1.3 tonnes of carbon equivalent per person since 

1970 (see Figure 1), and we argue that the statistical features of historical per capita 

emissions data points to the likely existence of an equilibrating mechanism, possibly 

through world energy markets. As they become more globally-integrated, increased 

emissions from increased energy consumption in one country would cause upward 

pressure on energy prices and thus lower emissions in other countries.  There is evidence 

that the international market for coal has become less regionally-fragmented since the 

1960s and a single world market emerged after 1980 for at least some categories of coal 

(Wårell 2006). Based on our analysis of global and national emissions behavior we 

consider it likely that the distribution of average annual per capita emissions will continue 

to have an upper bound less than 1.88 tonnes per capita by mid-century (see Section 4.2). 

(c) Combining the central UN projection of 9.3 billion persons and a per capita emissions 

maximum of 1.88 tonnes as of 2050 implies total annual global carbon emissions are 

unlikely to exceed 17.5 billion tonnes per annum through the mid-century. Yet one-quarter 

                                                             

1 The UN projection was recently revised from an earlier projection of 8.9 billion: see press release 
available at http://esa.un.org/unpd/wpp/Other-Information/Press_Release_WPP2010.pdf. 

http://esa.un.org/unpd/wpp/Other-Information/Press_Release_WPP2010.pdf
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of the SRES scenarios are above this amount, which suggests that the distribution is likely 

skewed in such a way that the top half is less likely to be observed than the bottom half in 

the coming decades. We will show that this is the case even if we allow for the probability 

of future structural breaks and upward trends similar to those observed during some parts 

of the postwar interval.  

It might seem surprising to argue that emission scenarios are overstated since recent 

comparisons of SRES scenarios against observations (see Raupach et al., 2007) indicate 

that actual emissions are increasing at a faster rate than most SRES scenarios had projected 

for the first decade of the 21st century. The median of SRES per capita emission rates as of 

2000 (1.13 tonnes, see Table 1) is somewhat low compared to the mean post-1970 per 

capita emissions level (1.14 tonnes, see next section). But the SRES projections imply a 

sharp acceleration after 2010; such that by 2020 the projected per capita emission levels 

move well above the historical distribution, and by 2050 the distribution has shifted a 

considerable distance to the right (see Section 4.1). Our empirical modeling suggests that 

while such acceleration is possible, it is not historically likely. 

One of the reasons for supposing that global emissions will accelerate is that developing 

countries may converge on developed-economy per capita emission levels, but not vice-

versa. National per capita emissions span a wide range, from a recent low of under 0.06 

tonnes per person in Afghanistan, Haiti, Myanmar (Burma), and in some of the countries in 

sub-Saharan Africa, to a high of 5.5 tonnes per person in the U.S. (Luxembourg and a few of 

the smaller oil producing countries have even higher per capita emissions). A growing body 

of work has examined annual per capita CO2 data at the national level to test for 
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convergence, with mixed results especially outside the OECD (see, for example, Strazicich 

and List, 2003, McKibbin and Stegman, 2005, Nguyen Van, 2005, Aldy, 2006, Romero-Avila, 

2008, Westerlund and Basher, 2008, Barassi, Cole, and Elliott, 2008, and Panopoulou and 

Pantelidis, 2009).  However, none of these works have attempted to use the findings to 

evaluate the probability of different CO2 emission scenarios.  

The theoretical mechanisms underlying the proposed acceleration in the 40 SRES 

emission scenarios are difficult to characterize. They are described as “scenarios” rather 

than forecasts, presumably to downplay their expected predictive value, but at the same 

time they are key inputs to climate model projections that are routinely presented as 

forecasts of climatic changes over the coming century, so we proceed on the assumption 

that their validity as forecasts is worth testing. The IPCC used a qualitative “storyline” 

methodology where future possible socioeconomic states of the world are narrated.  The 

required time-paths of consumption and output needed to reach the projected end-state 

were then inferred. The storylines are not based on conventional economic growth theory 

or theoretical resource models, and consequently not all constraints that apply in general 

equilibrium models are binding in SRES scenarios. The IPCC scenarios were also criticized 

for making international comparisons based on market exchange rates rather than 

purchasing power parities, which may bias emission estimates upward [Castles and 

Henderson, 2003; Nakicenovic et al., 2003; McKibbin, Pearce, and Stegman, 2007].  

Nevertheless, the IPCC retained the same set of SRES scenarios in its 2007 Report (IPCC, 

2007). 
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In Section 2 we look at the global average per capita data and investigate whether it 

exhibits stationarity around a trend after allowing for structural breaks. We provide 

separate discussions of the sample up to 2006 and up to 2010 since the last two 

observations are calculated on a different basis and break-detection methods lack power 

near the sample ends, but some of the results are sensitive to changes that occur right at 

the end of the series. In Section 3 we look at the trends in individual countries and discuss 

the evidence for cointegration. In Section 4 we use simulations to consider how future 

trend breaks could impact different forecast scenarios. Specifically, we want to examine if 

allowance for future structural breaks that reintroduce the kinds of trends observed over 

historical intervals yields a sufficiently wide range to encompass all of the 40 SRES 

scenarios as of 2050.  We find that as the probability of a future trend break increases, the 

forecast per capita emission rate at 2050 rises but the distribution narrows. Across the 

group of simulations with structural breaks the maximum projected per capita emissions 

rate as of 2050 is exceeded by 11 of the 40 SRES scenarios.  Overall, we conclude that the 

upper half of the SRES scenarios is less likely than the lower half. The top quartile of 

emission scenarios appears to be particularly difficult to justify. 

2 TIME SERIES CHARACTERISTICS OF GLOBAL EMISSIONS 

2.1 DATA AND METHODS 

 
We collected annual per capita CO2 emissions data for the post-1950 interval for the 

world as a whole, and then examined continuous data for 117 individual countries.  Our 

data on emissions and population come from the Carbon Dioxide Information and Analysis 
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Center (CDIAC, http://cdiac.ornl.gov/trends/emis/em_cont.html) [Boden et al., 2010]. Per 

capita CO2 emissions are expressed as carbon-equivalent tonnes. Estimates are based on 

observed fuel consumption by type, with marine bunker fuel emissions assigned to the 

destination country, plus emissions from cement production and gas flaring. Emissions 

from deforestation and land use are not included. CDIAC total emissions are available back 

to 1751, but their national population archive only goes back to 1950, so the per capita 

estimates only begin then.  

CDIAC offers final estimates for total emissions, national emissions and per capita 

emissions up to 2008.2 It also publishes what it describes as preliminary 2009 and 2010 

national and global emissions.3 We use these observations as well in Section 4.2, but in the 

absence of the CDIAC population estimate we used World Bank population figures, which 

are not identical.  

Because of the break-up of the former Soviet Union, the CO2 emissions record for East 

Germany and the former Soviet countries is not continuous.  A continuous record exists for 

117 other countries. While the former communist countries are not included in the list of 

individual national time series examined in Section 3, they are included in our global 

averages.  

In the next two sections we test per capita emissions data for trend stationarity, which, if 

observed, would indicate a mean-reverting property at the global level. This is an 

                                                             

2 See http://cdiac.ornl.gov/ftp/ndp030/global.1751_2008.ems, accessed June 5, 2012.  

3 See http://cdiac.ornl.gov/trends/emis/prelim_2009_2010_estimates.html, accessed June 5, 2012.  

http://cdiac.ornl.gov/trends/emis/em_cont.html
http://cdiac.ornl.gov/ftp/ndp030/global.1751_2008.ems
http://cdiac.ornl.gov/trends/emis/prelim_2009_2010_estimates.html


 8 

important property to establish in order to place in context the exceptional growth of 

Indian and Chinese fossil fuel consumption, especially coal. According to the US Energy 

Information Administration (online at http://tonto.eia.doe.gov/), installed coal-based 

power production capacity rose by 103% in India between 1990 and 2007, and by 444% in 

China over the same interval. Over this period, per capita emissions rose from 0.22 to 0. 38 

tonnes in India (+73%) and from 0.59 to 1.39 tonnes in China (+136%), with trends that 

show no signs of abating. Thus, it would seem inevitable that per capita emissions globally 

should rise.  

However, CO2 emissions arise from fuel consumption, and limits to supply mean that 

consumption increases in one region may affect prices in such a way as to reduce 

consumption in other regions. Figure 2 shows the example of India and the United States 

from 2001 to 2008. The graph shows the annual percentage change in consumption of coal. 

As India consumption accelerates, US consumption growth slows, and even at the annual 

level there is an apparent offsetting pattern. Along the same lines, Figure 3 shows that as 

Chinese and Indian coal consumption rose over the post-2000 interval, the share of total 

production used by the rest of the world fell.  

These graphical patterns are only illustrative. They do not show up in all pairwise or 

regional comparisons. We conjecture that the overall global pattern of the data might be 

the result of rapid per capita emissions growth rates in some regions offset by 

corresponding reductions elsewhere. However, more careful examination must be 

undertaken using statistical inference rather than rely on examination of graphs. The 

results in Sections 2.2, 2.3 and 3 lead us to hypothesize the existence of a coordinating 

http://tonto.eia.doe.gov/
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mechanism, possibly arising from international energy markets. Wood (2010) used the 

explained variance of the first principal component (PC1) of developed and developing-

country groupings of per capita emissions to characterize the level of coherence in 

movements across countries, and found that, as of 1984, both types of countries exhibit 

similar levels of coherence of the type illustrated in Figures 4 and 5 (the explained variance 

of PC1 was 0.69 for each). He also found that world energy prices had significant 

explanatory power for the emergence of such coherence in both developed and developing 

countries after 1984, whereas neither trade intensity nor government size did. These 

findings suggest that the offsetting behavior illustrated in Figures 2 and 3 may be a feature 

of global energy markets.  

Before performing trend calculations we first seek to determine if annual per capita CO2 

emissions are nonstationary by testing for a unit root.  Following the seminal paper by 

Perron [1989], it is well known that failure to allow for an existing structural break leads to 

bias against rejecting a unit root when the unit root hypothesis should be rejected.  To 

provide a remedy, Perron [1989] suggested allowing for one known, or “exogenous,” 

structural break in the augmented Dickey-Fuller (ADF hereafter) unit root test.  Following 

Perron [1989], Zivot and Andrews [1992] (ZA hereafter), among others, suggested 

determining the break point “endogenously” from the data.  The ZA test selects the break 

point where the t-statistic that tests the unit root null is minimized.  A potential problem 

common to the ZA and other similar ADF-type endogenous break unit root tests is that they 

typically derive their critical values while assuming no break(s) under the null.  Nunes, 

Newbold, and Kuan [1997] and Lee and Strazicich [2001] show that this assumption leads 

to over-rejections of the null hypothesis of non-stationarity in the presence of a unit root 
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with break.  As a result, when using these tests researchers might conclude that a time 

series is trend stationary with breaks when in fact the series is nonstationary with 

break(s). To avoid these problems, we utilize the endogenous two- and one-break Lagrange 

multiplier (LM) unit root tests derived in Lee and Strazicich [2003, 2004].4 

Implementation of the two-break minimum LM unit root test can be described as follows.  

According to the LM (score) principle, a unit root test statistic can be obtained from the 

following regression: 

  yt  = Zt + S


t-1+ i S


t-i +  t ,      (1) 

where S


t is a de-trended series such that S


t = yt - 


x - Zt


, t = 2,..,T.  


 is a vector of 

coefficients in the regression of yt on Zt, where 


x = y1 - Z1


, and y1  and Z1 are the first 

observations of yt and Zt, respectively.   is the first-difference operator, and t is the 

contemporaneous error term that is assumed to be independent and identically distributed 

with zero mean and finite variance.  Zt is a vector of exogenous variables defined by the 

data generating process.  The LM test with two level and trend breaks is described by Zt = 

[1, t, D1t, D2t, DT1t*, DT2t*], where Djt = 1 for t  TBj + 1, j = 1, 2, and zero otherwise; DTjt* = t 

- TBj for t  TBj + 1, j = 1,2, and zero otherwise; TBj stands for the time period of the break(s).  

Note that the test regression (1) involves Zt instead of Zt so that Zt = [1, B1t, B2t, D1t, D2t], 

where Bjt = Djt and Djt = DTjt*, j = 1, 2.  To correct for serial correlations, we include 

                                                             

4 See also Perron [2006] for a summary of spurious rejections in ADF-type endogenous break 
tests. 
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augmented terms  S


t-i, i = 1,..,k, as necessary.5  Under the unit root null hypothesis, = 0 in 

equation (1) and the test statistic can be defined as: 

  


 = t-statistic for the null hypothesis  = 0.     (2) 

 

To determine the location of breaks (j = TBj/T, j=1, 2), the LM test uses the grid search: 

 LM = Inf
 

 


().   (3) 

The break points are determined where the unit root t-test statistic is minimized (i.e., the 

most negative) and, thus, least favorable to the unit root null hypothesis.  As demonstrated 

in Lee and Strazicich [2003, 2004], critical values for the model with level and trend 

break(s) depend (somewhat) on the location of the breaks (j).  Therefore, we use critical 

values that correspond to the location of the breaks. 6 

National CO2 emissions data through 2006 were available at the time of our country-

specific empirical work, though these series now extend up to 2008. We will report our 

national data ending in 2006, since nothing critical in our overall story would change based 

                                                             

5 At each combination of break points  = (1, 2) in the time interval [.1T, .9T] (to eliminate end 
points), where T is the sample size, we determine k by following the “general to specific” procedure 
suggested by Perron [1989].  We begin with a maximum number of eight lagged first-differenced 
terms (k = 8) and examine the last term to see if it is significantly different from zero at the 10% 
level (critical value in an asymptotic normal distribution is 1.645).  If insignificant, the maximum 
lagged term is dropped and the model re-estimated with k = 7 terms.  The procedure is repeated 
until either the maximum term is found or k = 0, at which point the procedure stops.  This 
technique has been shown to perform well as compared to other data-dependent procedures to 
select the number of augmented terms in unit root tests [Ng and Perron, 1995]. 

6 Gauss codes for the one- and two-break minimum LM unit root test are available on the web site 
http://www.cba.ua.edu/~jlee/gauss. 

http://www.cba.ua.edu/~jlee/gauss
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on assimilation of the new data to 2008. We expect to observe non-stationarity in some of 

the countries, and our analysis confirms this to be the case. The salient issue is the change 

in the global characteristics based on recent data, so for the global level we take account of 

data up to the present. 

2.2 TREND AND UNIT ROOT TESTS: 1950-2006 SAMPLE 

 
Time series plots of annual global population and global total emissions series from 1950-

2010 are displayed in Figure 4. We first report results coinciding with our national sample 

which ends in 2006. We test for evidence of stationary or nonstationary time series by 

performing LM unit root tests on each series.  Two structural breaks in level and/or trend 

are identified in each series, with breaks identified in 1967 and 1989 for global emissions 

and in 1968 and 1995 for global population, respectively.  The estimated t-test statistic of -

5.42 rejects the unit root in global emissions at the 10% level of significance, while the t-

test statistic of -4.62 cannot reject the unit root null in global population at the 10% level of 

significance.  While the time series properties of global emissions and global population are 

interesting for their own sake, we focus our attention on the statistical properties of per 

capita global emissions due to the noted stability of this series in recent decades. 

The LM test results for annual global per capita CO2 emissions are displayed in the first 

line of Table 2 labeled “WORLD.”  Since only one break was identified at the 10% level of 

significance in the two-break test, we repeated our test procedure using the one-break LM 

unit root test.  The global per capita series rejects the unit root at the 10 percent 

significance level and identifies one structural break in 1979.  Given our finding that global 

per capita emissions are stationary after controlling for breaks, we estimate a regression 
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on the identified intercepts and trends, denoted as D50-79, D80-06, T50-79, and T80-06, 

respectively. Four lagged dependent variables are included to correct for serial 

correlation.7  The estimated coefficients can be used to examine more carefully the size and 

significance of the different intercepts and trends.  The estimated equation is described as 

follows (t-statistics in parentheses): 

Regression of Annual Global Per Capita CO2 Emissions (yt) on Structural Breaks, 1950-2006 

   ŷt = 0.268D50-79 + 0.508D80-06 + 0.010T50-79 + 0.001T80-06 + lags   (4) 

         (3.74)  (3.32)  (3.36)  (1.15) 

Adjusted R-squared = 0.983          SER = 0.019          Q(12) = 9.36            Jarque-Bera = 1.08 

 

While there is an approximate doubling in the intercept on global per capita emissions 

following the break, the trend slope after 1979 is not significantly different from zero (the 

p-value = 0.255 on the estimated coefficient of T80-06).  The Ljung-Box Q-statistic for 12 lags 

indicates that the null of no remaining serial correlations cannot be rejected at the usual 

significance levels (p-value = 0.672), and the Jarque-Bera statistic is unable to reject the 

null that the residuals are normally distributed (p-value = 0.583).  We do not attempt to 

interpret the timing of the break: Lanne and Liski (2004) estimated structural breaks in 

                                                             

7 Beginning with a maximum of eight lagged dependent variable terms, a general to specific 
procedure similar to that described in footnote 5 was utilized to determine the number of lagged 
terms.  The estimated coefficients and their t-statistics (in parentheses) for the yt-1 to yt-4 variables 
included in (4) were 1.052 (7.84), -0.407 (-2.05), 0.157 (0.82), -0.256 (-1.77), respectively.  We also 
performed tests for heteroskedasticity and ARCH effects in the residuals, but neither was significant 
at the 10% levels. 
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long time series of per capita CO2 in 16 industrialized nations and concluded that none can 

be readily identified with well-known oil price shocks.  This may be because CO2 emissions 

are more heavily influenced by solid fuel consumption (coal, etc.) than by liquid petroleum 

use, but in any case it is not necessary to rationalize the specific dating of the break to 

derive implications from our findings.8 

In summary, the above findings indicate that annual global per capita emissions from 

1979 to 2006 behaved as a trendless series centered on a stationary mean.  The mean and 

standard deviation (SD) of global per capita emissions for the identified time periods are as 

follows.  In 1950-1979, the mean and SD are 0.943 and 0.189, respectively.  In 1980-2006, 

the mean and SD are 1.139 and 0.040.  The Jarque-Bera statistics for global per capita 

emissions in the two sample periods are 2.39 for 1950-1979 and 3.24 for 1980-2005, 

implying that the null hypothesis of normality cannot be rejected in either time period at 

the usual significance levels (p-values are 0.302 and 0.198, respectively).9  

2.3 TREND AND UNIT ROOT TESTS: 1950-2010 SAMPLES 

 
We performed a regression as in (4) using the time series 1950-2007 and the results were 

qualitatively similar.  There was also only one break identified in a sample ending in 2008, 

                                                             

8 While one might consider allowing for more than two breaks in the unit root tests, we do not 
consider this possibility in the present paper.  In particular, the computational burden of allowing 
for three or more breaks, in conjunction with determining the number of first differenced lagged 
terms, would increase significantly.  However, allowing for more than two breaks may not be a 
concern here since we reject the unit root in global per capita emissions with one break. 

9 We report results here on the Jarque-Bera statistic for 1980-2005.  If the 2006 observation is 
included we reject the null of normality for 1980-2006.  However, 2006 is an extreme value in the 
sample and the Jarque-Bera test is sensitive to outliers (Spanos, 1986, 454-455); normality should 
not be ruled out when removal of an outlier accounts for the test result, as in this case.  Therefore, 
we will rely on the result obtained using 1980-2005, while the reader should note this qualification. 
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though it is in 1990. Moving the end date to 2009, two level and/or trend breaks were 

identified in 1978 and 1991, respectively.  As in the 1950-2006 time period, the t-test 

statistic for 1950-2009 rejects the unit root null hypothesis at the 10% level of significance 

(t-test statistic is -5.47).  Given that global per capita emissions are again stationary with 

breaks, we repeated the regression estimation procedure of Equation (4) with the 

following results:10 

Regression of Annual Global Per Capita CO2 Emissions (yt) on Structural Breaks, 1950-2009 

  ŷt = 0.285D50-78+0.559D79-91+0.527D92-09+0.011T50-78-0.001T79-91+0.003T92-09+lags (5) 

         (4.72)     (4.26)  (4.27)  (4.11)   (-0.35)  (2.84) 

Adjusted R-squared = 0.982          SER = 0.020          Q(12) = 9.65            Jarque-Bera = 1.858 

 

The Ljung-Box Q-statistic for 12 lags indicates that the null of no remaining serial 

correlations cannot be rejected at the usual significance levels (p-value = 0.647), and the 

Jarque-Bera statistic is unable to reject the null that the residuals are normally distributed 

at the usual significance levels (p-value = 0.395).  While the estimated trend slope in the 

most recent time period is positive and significant at the 1% level (p-value = 0.007 on the 

estimated coefficient of T92-09), the trend slope is not large (0.003).  

                                                             

10 Four lagged dependent variables were included to correct for serial correlations.  The number 
of lagged dependent variables was determined by the general-to-specific procedure described in 
footnote 8.  As in (4), we performed tests for heteroskedasticity and ARCH effects, but neither was 
significant at the 10% levels. 
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Finally, we performed unit root tests using our most recent data through 2010.  Two level 

and/or trend breaks were identified in 1972 and 2001.  The unit root test statistic fails to 

reject the null of a unit root at the 10% level. The test statistic is -5.1239 while the 10% 

critical value is -5.32. If it is truly the case that the series is not trend stationary then 

estimating trend and break coefficients in a regression as in (5) would not be appropriate. 

However, it is possible that the unit root test simply lacks power, especially if a break is 

emerging near the end of the sample. This cannot be decided based on our data set, but will 

be apparent one way or the other with additional years of data.  Given that we nearly reject 

the unit root null at the 10% level and unit root tests have low power, we estimated the 

following regression on the 1972 and 2001 breaks using the data ending in 2010: 11 

Regression of Annual Global Per Capita CO2 Emissions (yt) on Structural Breaks, 1950-2010 

  ŷt = 0.320D50-72+0.637D73-01+0.605D02-10+0.013T50-72-0.001T73-01+0.014T02-10+lags (6) 

         (4.67)     (4.68)  (4.81)  (4.97)   (-2.31)  (2.65) 

Adjusted R-squared = 0.986          SER = 0.020          Q(12) = 13.68            Jarque-Bera = 1.318 

 

The Ljung-Box Q-statistic for 12 lags again indicates that the null of no remaining serial 

correlations cannot be rejected at the usual significance levels (p-value = 0.322), and the 

Jarque-Bera statistic is unable to reject the null that the residuals are normally distributed 

                                                             

11 Two lagged dependent variables were included to correct for serial correlations.  The number of 
lagged dependent variables was determined as in footnote 8.  We again performed tests for 
heteroskedasticity and ARCH effects, but neither was significant at the 10% levels. 
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at the usual significance levels (p-value = 0.517).  The post-2001 trend term in (6) is 

positive (0.014) and significant at the 5% level (p-value=0.0107). 

Compared to the 1950-2009 estimates in (5), the differences in (6) are not large, but the 

1950-2010 results have a larger end-of-sample trend coefficient. In Figure 1, we plot the 

actual global per capita emissions for 1950-2010 along with the fitted values from a simple 

OLS regression on the different trends before and after the identified breaks. As can be 

observed, following approximately three decades of a slight negative trend, a positive trend 

emerged after 2001, indicating a structural break. In section 4.2 we examine the 

distribution of 2050 per capita emissions levels using simulations that treat the post-2001 

trend as the ongoing default case and allow structural breaks with varying levels of 

probability based on historical occurrence.  

2.4 SUMMARY OF TREND ANALYSIS 

Our methodology tests for trend stationarity while allowing for up to two endogenous 

structural breaks. Hence it improves robustness against the problem of under-rejecting the 

unit root null, however there is a potential loss of power when a structural break seems to 

occur near the end of the sample. On the data from 1950 to 2008 we reject the unit root 

null, implying stationarity, as is also the case when we introduce the first of two 

preliminary end-of-sample observations. But with the additional introduction of the 2010 

observation we do not. Our interpretation is that the per capita emissions data at the global 

level is likely trend-stationary but may be undergoing a structural break that will not be 

reliably identifiable until a few more years of data are collected.   
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3 EXAMINATION OF 117 COUNTRIES 

In this section, we apply our unit root tests to the 117 individual countries for which we 

were able to obtain consistent time series on annual per capita CO2 emissions spanning 

1950-2006. National-level data have been examined in some previous studies of 

convergence (see above), though our panel here covers more countries than previously 

examined. Moreover, our interest in this section is not convergence, but testing for 

stationarity. If we do not observe stationarity at the national level we can conclude that a 

cointegrating mechanism exists, which provides evidence for long-run equilibrating 

behavior among countries.  

The test results are displayed in Table 2.  A bold-faced entry indicates that the unit root 

null hypothesis could not be rejected (at the 10% level) in 30 of the 117 countries.  

However, in approximately one-half of these countries the test statistic nearly rejects the 

unit root (at the 10% level).  Given the relatively low power of unit root tests to reject the 

unit root null, we might consider that all of the 117 national per capita emission series are 

stationary.  We also test the 117-country annual average emissions series (total emissions 

divided by total population for these 117 countries) using the two-break LM unit root test.  

The test results are displayed in the top row of Table 2 as “117AVERAGE.”  As with the 

global per capita series, the unit root null hypothesis is rejected (at the 5% level).12 

                                                             

12 Data to 2008 were available for 114 of the 117 countries. The average over these 114 countries 
is also trend stationary with breaks in 1966 and 1979.  Hence, even if more of the national series 
were found to be nonstationary we would conclude that a cointegrating relationship must exist. 
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Since the 117-country annual per capita emissions series is stationary, we infer that if per 

capita emissions in the 30 countries identified in Table 2 are indeed each nonstationary 

then a cointegrating relationship exists, implying that shocks to per capita emissions in one 

or more of these countries are offset by opposing movements in other countries. 

Theoretically, if per capita emissions in 87 of the 117 countries are I(0) (i.e., stationary in 

levels) and the remaining 30 countries are I(1) (i.e., stationary after differencing), while the 

117 country average is I(0), then per capita emissions in the remaining countries must be 

cointegrated. As mentioned above, a possible explanation for this effect is the existence of a 

coherent world energy market. Increased emissions in one country may cause upward 

pressure on energy prices and induce lower emissions in other countries, especially as 

fossil energy markets become less regionally-fragmented (Wårell 2006). On the other hand, 

an inability to reject the unit root null hypothesis in 30 of the 117 countries might be due to 

the low power of unit root tests to reject a false null, implying that per capita emissions 

may indeed be stationary in all 117 countries. 

To examine the time paths of the individual country emissions in more detail, we 

performed additional regressions of annual per capita emissions on intercepts and trends 

for the 87 series identified as stationary in Table 2.13  The methodology followed is the 

same as when estimating equation (4).  Table 3 shows the estimated trend coefficients for 

the individual countries in the time period following the most recent structural break.  

Overall, 39 (45%) of the 87 countries that reject the unit root (at the 10% level) have 

                                                             

13 Regressions were not reported for the 30 countries that could not reject the unit root in Table 2, 
as regression results from these time series may be unreliable. 
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positive and significant trends in their per capita emissions, while 7 (8%) have negative 

and significant trends.  The remaining 41 (47%) of countries have no significant trend.  

Therefore, over half (55%) of the countries have recent trend slopes that are either 

negative or not significantly different from zero.  Thus the country-level findings provide 

some insight to our main finding of a post-1979 mean-stationary process at the global level. 

The fact that 55% of countries have negative or non-existent per capita trends provides 

support for the notion that growing per capita emissions in some countries may be offset 

by static or declining per capita emissions in other countries. 

Our main interest is in the stability of global per capita emissions; examination of national 

data is undertaken to try to improve our understanding of this stability. In addition, rapid 

economic growth in many developing economies has received increasing attention, and it 

may constitute an emerging structural break. To further examine the recent stability of 

global per capita emissions, in Figures 5 we plot the actual and trend per capita CO2 

emissions in the world’s five largest economies plus India. Rankings are based on GDP and 

come from the International Monetary Fund for 2010. Germany, the 5th largest economy, is 

omitted since a continuous series is not available. We include India, the 10th largest 

economy, due to its importance among the rapidly growing emerging market economies.  

Trend plots are estimated by OLS regressions on the identified breaks in Table 2.  

As described in Table 3, following the structural break in 1989 the trend term in U.S. per 

capita emissions is not significantly different from zero.  Given that the U.S. is the single 

largest contributor to global carbon dioxide emissions, this helps to explain the recent 

stability of global per capita emissions. Given that China’s per capita emissions could not 
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reject the unit root hypothesis, a regression on trend was not undertaken, instead its 

emissions can be characterized by a random walk with upward drift. CDIAC data indicate 

that the upward drift persists after 2006 and the current per capita emissions level exceeds 

1.3 tonnes.  While Japan’s per capita emissions are trending upward following the most 

recent break, the opposite is the case in France and the UK. Following the recent trend 

break in 1992, per capita emissions in India are stationary around a positive trend that is 

significant at the 1% level (Table 3).  Taken together, the results displayed in Figure 5 lend 

support to our earlier suggestion that increasing per capita emissions in some countries 

are likely being offset by declining per capita emissions in other countries.  In particular, 

while per capita emissions are rising in China, Japan, and India, they are stable in the U.S. 

and declining in France and the UK. 

To summarize, annual national per capita CO2 emissions are stationary, except possibly 

for a subgroup of countries which, if nonstationary, are cointegrated.  The time series of 

global per capita CO2 emissions ending in 2009 rejects the unit root, and for data ending in 

2010 nearly rejects the unit root. On the basis of these findings, we next consider whether 

the SRES scenarios through 2050 can be ranked in terms of likelihood. 

4 EVALUATING THE PROBABILITY OF CARBON DIOXIDE EMISSION 

SCENARIOS 

4.1 STATIONARY Z-SCORES BASED ON THE 1950-2006 SAMPLE 
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In this section we ask what can be said about the probability distribution of future annual 

global emissions if the results on the sample up to 2006 are actually indicative of its 

permanent behavior. This can be thought of as the least conservative way of evaluating the 

likelihood of the emission scenarios, whereas the Monte Carlo simulations in the next 

section are much more conservative; the similarities between the outcomes will then 

illustrate the overall message of the data. The means and SDs are as follows. Up to 1979 the 

mean was 0.943 and the SD was 0.189, while from 1980 to 2006 they were, respectively, 

1.139 and 0.040. The forty SRES scenarios are summarized in Table 4.  As of 2000, the 

observed distribution of annual per capita emissions overlaps with the histogram of the 

SRES scenarios (Figure 6), which indeed are more clustered and slightly lower than the 

observed distribution.  

However, Figure 7 shows that after 2000 the match between the SRES distribution and 

the distribution implied by the data up to 2006 quickly breaks down.  The observed 

distribution in Figure 7 is the same as in Figure 6, i.e., N(1.139, 0.0402), except that the axes 

are rescaled to accommodate the histograms of the SRES emissions rates in 2020 and 2050.  

As of 2020 the SRES distribution has spilled dramatically out to the right, and the 

dispersion carries on through 2050.  A 10-  departure above the pre-2006 mean would 

imply 1.54 tonnes per person annually.  Figure 3 shows that by 2050 the spread in the 

SRES distribution has continued well past this, with some scenarios going more than 40 

SDs above the mean.  

Table 5 shows the “naïve” probabilities attached to each of the 40 SRES scenarios, 

evaluated by comparing the implied annual per capita emissions in 2020 and 2050 to 
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N(1.139, 0.0402). We highlighted in italics the 22 scenarios that are within 5-  of the mean 

as of 2020 and in bold the 12 scenarios that are in the same proximity as of 2050.  This 

range is quite wide in probability terms, and would permit the mean to drift upward by one 

SD per decade for the first half of the 21st century. Scenarios outside this range can be 

considered relatively implausible compared to historical data.  

For the 12 scenarios that are within 5-  of the current mean as of 2050, annual per 

capita emissions projected at 2050 average 1.159 tonnes and total emissions average 10.8 

GtC, with a range of 9.11 to 15.11 GtC. By comparison, the reduced-form model of 

Schmalensee et al. (1998) projected 2050 emissions to be in the range 13.9 to 19.2 GtC. 

Their modeling approach involved estimating a log-linear relationship between per capita 

emissions and per-capita real GDP in a global panel with fixed country and time effects, 

then extrapolating forward under a variety of assumptions about the future shape of a 

piecewise trend. They did not impose any cross-country restrictions that would cause 

increases in one country’s emissions to lead to reductions in those of others.   

4.2 SIMULATING FUTURE STRUCTURAL BREAKS BASED ON THE 1950-2010 SAMPLE 

 
Taking the trend coefficients on the full sample as valid, trend rates in annual global per 

capita emissions, as shown in Figure 1 and reported in Section 2.3, have gone from positive 

and significant (0.0125         over 1950 to 1972) to negative and significant (-0.0013 

       over 1973 to 2001) and back to positive and significant (0.0144        over 2002 

to 2010).  A worse-than-worst-case scenario by historical standards would be for per 

capita emissions to trend upward by about 0.02 tonnes per capita per year, starting in 2010 

and running for the next 40 years, in which case emissions would rise from 1.34 to 2.14 
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tonnes per capita.  If this were taken to be the feasible upper limit of emissions, it would 

still rule out one-fifth (8/40) of the SRES scenarios. To validate the highest SRES scenario, 

we would need to observe an annual increase in emissions per capita of just under 0.04 

tonnes per person every year from 2000 to 2050, roughly double the highest trend 

observed during the pre-1980 time period.  

Since breaks have been detected in the past there is every possibility they will occur in the 

future. We construct a distribution of possible 2050 emission rates as follows. The 

regression on the 1950-2010 sample yields trend terms as noted above. Suppose in each 

year from 2010 to 2050 there is a 5% probability of a structural trend break (reflecting 3 in 

the past 60 years). If a break occurs it leads to the re-emergence of one of three trends, 

based on their approximate historical span: +0.0125 with 38% probability, -0.0013 with 

46% probability, and +0.0144 with 16% probability.  The series starts with a per capita 

emissions level of 1.3 and the null trend until the first break occurs is assumed to be the 

current rate of +0.0144. The algorithm runs for 41 years (2009 to 2050) and the 2050 per 

capita emissions level is recorded. This was repeated 5,000 times to generate a distribution 

of possible 2050 endpoints.  

The simulation yielded a bimodal distribution with a large spike at the maximum value of 

1.876 tonnes (Figure 8a).  The mean is 1.77 (min = 1.25, 95th percentile = 1.88, 99th 

percentile = 1.88, max = 1.88). Removing the maximum value the mean only changes to 

1.75 tonnes. The maximum in the presence of structural breaks (1.88) lays 18.5 standard 

deviations above the pre-2006 mean when computed without allowing for structural 

breaks. Although allowing for breaks thus widens the distribution considerably, 11 of the 
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40 SRES scenarios in 2050 (27.5%) are still in or beyond the top 5 percent of the new 

distribution, and indeed are above the maximum.  

We then repeated the experiment, but allowed the probability of a structural break to 

increase to 30% annually, then 80%.  Each change increases the 2050 mean, but narrows 

the distribution (Figure 8b), and the net effect is to leave more of the SRES scenarios for 

2050 in or beyond the top 1 percent. For a 30% probability of structural breaks, the mean 

is 1.54, the minimum is 1.33, the 95th percentile is 1.65, the 99th percentile is 1.69 and the 

maximum is 1.74.  15 out of 40 SRES scenarios (37.5%) are in or beyond the top 5 percent 

of the distribution and 14 are above the maximum. 

If the probability of a future structural break increases to 80% the mean moves further up 

to 1.58, but  the distribution narrows even more (Figure 8b): min = 1.46, 95th percentile = 

1.63, 99th percentile = 1.65 and max = 1.68.  16 out of 40  SRES scenarios (40%) are in or 

beyond the top 5% of the distribution, and 14 are above the maximum.  

Overall, simulations allowing for a default upward trend at current rates and a repetition 

of historical probabilities of future structural breaks greatly increase the mean and spread 

of the distribution beyond that implied by the stationary confidence interval. However, the 

distributions thus generated still do not overlap with the distribution of SRES scenarios. 

Allowing a structural break to return with an annual probability of 5% to 80%, we find that 

between about 30 and 40 percent of the SRES scenarios end up in or beyond the top 95th 

percentile of the resulting distributions, implying that the distribution of the SRES 

scenarios is likely skewed too high.  
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5 CONCLUSIONS 

 
Econometric forecast evaluation tools are beginning to be applied to a variety of modeling 

work related to global warming. Fildes and Kourentzes (2011) discuss the various concepts 

of forecasting as they apply to emission scenarios and climate model predictions, and apply 

forecast evaluation methods to regional and global temperature series. As they point out, 

application of forecast evaluation methods is only in the early stages with regards to 

climate modeling efforts generally, despite the importance of these prediction systems for 

policymaking. Here we focus on the issue of global-scale carbon dioxide forecasts. These 

span a very wide range and as such provide little guidance for policymakers. Empirical 

evidence shows that, despite considerable variability in annual per capita CO2 emissions 

within and among countries in recent decades, annual global per capita CO2 emissions have 

shown relatively little variability compared to per capita emissions at the national level. 

Most notably, the world mean held steady at just under 1.14 tonnes per person from 1967 

to 2006, neither drifting nor trending upwards, despite worldwide growth in per capita 

income and consumption over that time. At the national level, we find that annual per 

capita emissions are either stationary or cointegrated, suggesting an underlying economic 

equilibrating mechanism. There has been an increase in per capita emissions over 2007-

2010. The stability of the series up to 2006 would imply that this recent departure will 

revert to the mean, but even if it represents the start of a sustained trend, it would not be 

enough to validate the top end of the SRES distribution. 

A broken trend model allowing for endogenous structural breaks estimated on the 1950-

2006 sample period indicates that the global average annual per capita CO2 emissions level 
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is stationary and trendless. Allowing for a 5-  departure from the mean up to 2050 

disqualifies 28 of the 40 IPCC emissions scenarios (70%).  The remaining 12 scenarios 

project, on average, 10.8 billion tonnes of annual fossil fuel-based CO2 emissions as of 2050, 

which is in the low end of the IPCC range.  In principle, structural breaks may occur in the 

future, and data over the 2007 to 2010 interval is consistent with that occurrence, though it 

is statistically difficult to identify a structural break in the last five years of an annual 

sample.  

Using Monte Carlo simulations to allow for future structural breaks widens the class of 

admissible emission scenarios. If the probability of a structural break is assumed to be 

about 5% annually, we find that the maximum probable per capita emissions rate at 2050 

is about 1.88 tonnes per capita, and with a total population of about 9.3 billion this implies 

a maximum of just under 17.5 GtC of emissions, which implies that 11 out of 40 SRES 

scenarios are above the maximum. As the probability of future breaks rises the distribution 

of 2050 rates narrows and the top end declines. For an 80% probability of structural 

breaks about 40 percent of the SRES scenarios end up in or beyond the 95th percentile of 

projected 2050 emission rates.  

Overall, we find that the upper quartile of SRES scenarios requires that a strong upward 

trend in annual global per capita emissions must be sustained through 2050. However, the 

long interval of global economic growth up to 2006 coincided with trendless global per 

capital emissions, which may indicate that an equilibrating mechanism exists by which 

increases in some countries lead to offsetting decreases elsewhere. Further research is 

needed to formulate tests that can provide clearer evidence one way or the other. If the 
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historical pattern of structural breaks and intermittent trends is projected forward, the 

results assign greater probability to outcomes in the bottom half of the IPCC’s emission 

scenarios than the top half. 
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FIGURES 

 

Figure 1. Global Per Capita CO2 Emissions Annual Data from 1950-2010 and Least 
Squares Regression on Level and Trend Breaks in 1972 and 2001. 
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Figure 2. Annual percent change in coal consumption, India and US. Data source: 
EIA. 

 

 

Figure 3. Chinese plus Indian total coal consumption (bars), percent of total 
production used by rest of the world (line). Data source: EIA. 
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Figure 4. Global CO2 Emissions and Global Population Annual Data from 1950-
2010. 
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Figure 5. Per Capita CO2 Emissions Annual Data from 1950-2006 and Least Squares 
Fitted Values for Six Countries. Note China trend not fitted due to nonstationarity. 
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Figure 6. Histogram of Implied CO2 Per Capita Emissions as of Year 2000 in 40 SRES 
Scenarios, Compared to the Observed Distribution in Global Data (N(1.14, 0.042)). 
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Figure 7. Histograms of Implied CO2 Per Capita Emissions as of 2020 (black) and 
2050 (grey) in 40 SRES Scenarios, Compared to the Observed Distribution in Global 

Data (N(1.14, 0.042)). 
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Figure 8: a (top) distribution of simulated per capita emissions as of 2050, 5% 
probability of structural break. b (bottom): distributions assuming 30% and 80% 

annual probability of structural break. 
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TABLES 

  2000  2020   2050  

  CO2/capita 
Populati

on Total CO2 
CO2/capit

a 
Populatio

n 
Total 
CO2 

CO2/capi
ta 

  Name of Scenario 
(tons/perso

n) 
(million

s) (GtC) (tonnes) (millions) (GtC) (tonnes) 

1 A1B-AIM 1.1280 7,493 12.12 1.6175 8,704 16.01 1.8394 

2 A1B-ASF 1.1280 7,537 14.67 1.9464 8,704 25.72 2.9550 

3 A1B-IMAGE 1.1271 7,618 11.10 1.4571 8,708 18.70 2.1475 

4 A1B-MARIA 1.1280 7,617 8.69 1.1409 8,704 12.66 1.4545 

5 A1B-MESSAGE 1.1280 7,617 10.56 1.3864 8,704 16.47 1.8922 

6 A1B-MiniCAM 1.1311 7,618 10.74 1.4098 8,703 18.18 2.0889 

7 A1C-AIM 1.1280 7,493 14.34 1.9138 8,704 26.79 3.0779 

8 A1C-MESSAGE 1.1280 7,617 10.97 1.4402 8,704 20.64 2.3713 

9 A1C-MiniCAM 1.1311 7,618 10.99 1.4426 8,703 24.45 2.8094 

10 A1G-AIM 1.1280 7,493 13.09 1.7470 8,704 25.58 2.9389 

11 A1G-MESSAGE 1.1280 7,617 10.66 1.3995 8,704 21.45 2.4644 

12 A1FI-MiniCAM 1.1311 7,618 11.19 1.4689 8,703 23.10 2.6543 

13 A1T-AIM 1.1280 7,493 9.79 1.3066 8,704 11.43 1.3132 

14 A1T-MESSAGE 1.1280 7,617 10.00 1.3129 8,704 12.29 1.4120 

15 A1T-MARIA 1.1280 7,617 8.41 1.1041 8,704 10.80 1.2408 

16 A1v1-MiniCAM 1.1311 7,618 9.81 1.2877 8,703 15.80 1.8155 

17 A1v2-MiniCAM 1.1591 7,228 9.91 1.3711 8,393 15.39 1.8337 

18 A2-AIM 1.1252 8,198 11.29 1.3772 11,287 16.60 1.4707 

19 A2-ASF 1.1183 8,206 11.01 1.3417 11,296 16.49 1.4598 

20 A2G-IMAGE 1.1183 8,225 9.07 1.1027 11,298 18.17 1.6082 

21 A2-MESSAGE 1.1183 8,206 10.32 1.2576 11,296 15.11 1.3376 

22 A2-MiniCAM 1.1115 8,192 9.40 1.1475 11,296 15.24 1.3492 

23 A2-A1-MiniCAM 1.1487 7,558 7.89 1.0439 9,723 10.46 1.0758 

24 B1-AIM 1.1394 7,426 10.05 1.3534 8,631 12.59 1.4587 

25 B1-ASF 1.1280 7,537 13.22 1.7540 8,704 17.50 2.0106 

26 B1-IMAGE 1.1271 7,618 10.00 1.3127 8,708 11.70 1.3436 

27 B1-MARIA 1.1280 7,617 7.80 1.0240 8,704 9.11 1.0466 

28 B1-MESSAGE 1.1280 7,617 9.19 1.2065 8,704 9.24 1.0616 

29 B1-MiniCAM 1.1311 7,618 8.23 1.0803 8,703 9.30 1.0686 

30 B1T-MESSAGE 1.1280 7,617 9.11 1.1960 8,704 8.48 0.9743 

31 B1High-MESSAGE 1.1280 7,617 8.99 1.1803 8,704 10.11 1.1615 

32 B1High-MiniCAM 1.1311 7,618 9.15 1.2011 8,703 11.93 1.3708 

33 B2-AIM 1.1328 7,612 10.21 1.3413 9,367 14.96 1.5971 

34 B2-ASF 1.1328 7,650 11.48 1.5007 9,367 15.42 1.6462 

35 B2-IMAGE 1.1328 7,869 8.47 1.0764 9,875 11.23 1.1372 

36 B2-MARIA 1.1328 7,672 8.85 1.1535 9,367 12.74 1.3601 

37 B2-MESSAGE 1.1328 7,672 9.02 1.1757 9,367 11.23 1.1989 

38 B2-MiniCAM 1.1225 7,880 9.11 1.1561 9,874 12.73 1.2892 

39 B2C-MARIA 1.1328 7,672 9.56 1.2461 9,367 14.28 1.5245 

40 B2High-MiniCAM 1.1225 7,880 9.92 1.2589 9,874 16.44 1.6650 

 MEDIAN 1.128 7,618 9.96 1.310 8,704 15.18 1.465 

TABLE 1. Forty SRES Scenarios and Implied Per Capita Emissions 2000—2050. Notes: Also shown for 
2020 and 2050 is the total projected population and total projected emissions. Source: IPCC (2000). 
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Country t-statistic breaks Country t-statistic breaks Country t-statistic breaks 
 
WORLD -4.40c 79 171AVERAGE -5.98b 67, 79 
Afghanistan -6.66a 83, 92 Greece -3.54 68 Nicaragua -7.09a 74, 89 
Albania -6.46a 73, 89 Grenada -6.31b 86, 98 Nigeria -4.46 70, 89 
Algeria -5.99b 71, 89 Guatemala -6.46a 78, 84 Norway -5.52c 68, 88 
Angola -5.39c 75, 94 Guinea Bissau -6.29b 71, 96 Panama -5.81b 75, 94 
Argentina -4.56 78, 93 Guyana -5.60c 73, 86 PapNewGuinea-5.13 70, 87 
Australia -6.32a 78, 97 Haiti -4.12 87  Paraguay -6.94a 77, 92 
Austria -5.77b 69, 80 Honduras -4.11 77, 92 Peru -3.56 79 
Bahamas -8.65a 69, 88 Hong Kong -4.03 89  Philippines -5.18 71, 86 
Bahrain -6.12b 63, 75 Hungary -5.07 81, 90 Poland -6.72a 74, 88 
Barbados -6.08b 90, 00 Iceland -8.14a 67, 74 Portugal -4.72 76, 93 
Belgium -4.44c 74 India -5.69c 78, 92 Qatar -5.58c 62, 89 
Belize -6.41a 78, 99 Indonesia -4.94 61, 91 Rep.Cameroon -6.86a 78, 88 
Bolivia -6.66a 73, 87 Iraq -6.44b 79, 84 Romania -5.33c 71, 88 
Brazil -5.07 76, 93 Ireland -4.17 69, 94 St. Lucia -5.61c 78, 92 
Brunei -9.62a 68, 80 Iran -6.52a 78, 89 Samoa -6.94a 73, 79 
Bulgaria -5.03 63, 89 Israel -6.51a 66, 90 SaoTomePrinc.-4.38 74, 91 
Canada -4.62 68, 81 Italy -4.90 68, 81 Saudi Arabia -5.48c 69, 80 
Cape Verde -2.47  Jamaica -7.10a 70, 82 Sierra Leone -5.66c 68, 81 
Chile -4.90 73, 87 Japan -6.58a 67, 81 South Africa -6.89a 79, 97 
China -1.81  Jordan -5.96b 78, 92 Spain -5.37c 68, 92 
Columbia -5.80a 82 Kenya -4.04 84, 96 Sri Lanka -5.56c 81, 98 
Congo -5.44b 70, 90 Korea N. -10.91a 86, 96 St. Vincent -3.92 83 
Costa Rica -4.73 77, 92 Korea S. -5.70c 78, 97 Sudan -4.98 67, 81 
Cuba -7.70a 82, 93 Kuwait -5.66c 62, 78 Suriname -9.82a 70, 94 
Cyprus -4.85b 89 Lebanon -4.89b 90  Sweden -6.96a 64, 93 
Denmark -5.17 67, 90 Liberia -5.50c 67, 83 Switzerland -7.14a 90, 93 
Djibouti -5.56c 77, 99 Libya -17.00a 65, 76 Syria -11.19a 87, 96 
Dominica -6.96a 83, 98 Luxembourg -6.02b 63, 78 Taiwan -7.24a 70, 95 
Dominican Rep -6.03b 72, 93 Madagascar -5.08b 66  Thailand -8.63a 87, 90 
Ecuador -5.83b 76, 92 Malta -9.42a 84, 96 Togo -8.55a 64, 89 
Egypt -5.03 77, 92 Mauritius -5.09 65, 81 Tonga -7.58a 90, 95 
El Salvador -5.30 78, 91 Mexico -5.99b 77, 87 Trinidad Tobago -7.42a 93, 97 
Equat. Guinea-28.02a 96, 99 Mongolia -7.80a 83, 00 Tunisia -8.33a 86, 89 
Ethiopia -6.24b 64, 86 Morocco -5.71b 68, 82 Turkey -8.28a 63, 92 
Fiji -5.29 75, 89 Mozambique -6.07b 74, 86 Uganda -7.09a 90, 99 
Finland -5.46c 67, 80 Myanmar -6.10b 68, 88 United Kingdom -4.47c 75 
France -5.94b 69, 82 Nepal -6.29b 92, 00 United States -7.46a 82, 89 
Gambia, The -6.04b 73, 91 Netherlands -5.70b 68, 81 Uruguay -7.55a 62, 91 
Ghana -7.65a 68, 84 New Zealand -7.11a 90  Venezuela -8.58a 62, 65 
 

 
TABLE 2. Unit Root Tests of Annual Per Capita CO2 Emissions for the World and 117 

Countries, 1950-2006. Notes: The dependent variable is the level of annual per capita CO2 
emissions in country i.  t-statistic tests the null hypothesis of a unit root.  All unit root tests include 
intercept(s) and trend(s).  Breaks denote the structural break years that were identified by the one- 
or two-break LM unit root test (the 1900 prefix is omitted to conserve space; 00 denotes 2000).  A 
blank space denotes that no breaks were significant at the 10% level.  In the case of no significant 
breaks, the results were obtained using the conventional ADF test.  a, b, and c denote significance at 
the 1%, 5%, and 10% levels, respectively.  Critical values for the one- and two-break minimum LM 
unit root test come from Lee and Strazicich (2003, 2004). 
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Country trend break Country trend break Country trend break 
 
Afghanistan  0.002 92 Greece   Nicaragua  0.004b 89 
Albania  0.008b 89 Grenada  0.009a 98  Nigeria   
Algeria  0.019a 89 Guatemala  0.007a 84  Norway  0.027b 88 
Angola  0.021a 94 Guinea Bissau -0.002 96  Panama  0.005 94 
Argentina   Guyana  0.003 86  PapNewGuinea  
Australia -0.003 97 Haiti    Paraguay  0.003 92 
Austria  0.011a 80 Honduras    Peru   
Bahamas -0.008 68 Hong Kong    Philippines   
Bahrain  0.052a 75 Hungary    Poland -0.007 88 
Barbados  0.371b 00 Iceland -0.002 74  Portugal   
Belgium -0.005 74 India  0.004a 92  Qatar  0.087 89 
Belize -0.049a 99 Indonesia    Rep.Cameroon -0.003 88 
Bolivia  0.007b 87 Iraq  0.003 84  Romania  0.012 88 
Brazil   Ireland    St. Lucia  0.002 92 
Brunei -0.040 80 Iran  0.056a 89  Samoa  0.002a 79 
Bulgaria   Israel  0.004 90  SaoTomePrinc.  
Canada   Italy    Saudi Arabia -0.007 80 
Cape Verde   Jamaica  0.018a 82  Sierra Leone  0.001c 81 
Chile   Japan  0.014a 81  South Africa  0.001 97 
China   Jordan  0.016b 92  Spain  0.002a 92 
Columbia -0.001 82 Kenya    Sri Lanka  0.004 98 
Congo -0.001a 90 Korea N.  0.007 96  St. Vincent   
Costa Rica   Korea S. -0.062a 97  Sudan   
Cuba -0.004 93 Kuwait  0.127a 78  Suriname 0.001 94 
Cyprus  0.015b 89 Lebanon  0.015c 90  Sweden -0.009 93 
Denmark   Liberia  0.002 83  Switzerland  0.0001 93 
Djibouti  0.003b 99 Libya  0.026a 76  Syria -0.009 96 
Dominica  0.037a 98 Luxembourg -0.059b 78  Taiwan  0.016 95 
Dominican Rep 0.007 93 Madagascar -0.0002b 66  Thailand  0.012 90 
Ecuador  0.004 92 Malta -0.076c 96  Togo  0.001b 89 
Egypt   Mauritius    Tonga  0.007c 95 
El Salvador   Mexico  0.001 87  Trinidad Tobago 0.120c  97 
Equat. Guinea 1.605a 99 Mongolia  0.010c 00  Tunisia  0.005a 89 
Ethiopia -0.00003 86 Morocco  0.005a 82  Turkey  0.012a 92 
Fiji   Mozambique  0.0005b 86  Uganda  0.002b 99 
Finland  0.027a 80 Myanmar  0.002a 88  United Kingdom-0.010a 75 
France -0.009 82 Nepal -0.00000 00  United States  0.005 89 
Gambia, The  0.0005b 91 Netherlands   0.004 81  Uruguay  0.003 91 
Ghana -0.00002 84 New Zealand  0.026a 90  Venezuela  0.003 65 
 

 
TABLE 3. Estimated Coefficient of Final Trend Break in Annual Per Capita CO2 

Emissions, 1950-2006. Notes: The above results are from regression on the intercepts and 
trends identified using the LM unit root test results in Table 1.  The dependent variable is the level 
of annual per capita CO2 emissions in country i.  Trend is the estimated trend slope coefficient 
following the most recent structural break.  Break denotes the most recent structural break year 
identified by the one- or two-break LM unit root test (the 1900 prefix is omitted to conserve space; 
00 denotes 2000).  A blank space denotes that no breaks were significant at the 10% level.  
Countries denoted in bold were unable to reject the unit root hypothesis in Table 1, so regression 
estimation was not performed.  a, b, and c denote that the trend coefficient is significantly different 
from zero at the 1%, 5%, and 10% levels, respectively. 
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  2000  2020   2050  

  CO2/capita 
Populati

on Total CO2 
CO2/capit

a 
Populatio

n 
Total 
CO2 

CO2/capi
ta 

  Name of Scenario 
(tons/perso

n) 
(million

s) (GtC) (tonnes) (millions) (GtC) (tonnes) 

1 A1B-AIM 1.1280 7,493 12.12 1.6175 8,704 16.01 1.8394 

2 A1B-ASF 1.1280 7,537 14.67 1.9464 8,704 25.72 2.9550 

3 A1B-IMAGE 1.1271 7,618 11.10 1.4571 8,708 18.70 2.1475 

4 A1B-MARIA 1.1280 7,617 8.69 1.1409 8,704 12.66 1.4545 

5 A1B-MESSAGE 1.1280 7,617 10.56 1.3864 8,704 16.47 1.8922 

6 A1B-MiniCAM 1.1311 7,618 10.74 1.4098 8,703 18.18 2.0889 

7 A1C-AIM 1.1280 7,493 14.34 1.9138 8,704 26.79 3.0779 

8 A1C-MESSAGE 1.1280 7,617 10.97 1.4402 8,704 20.64 2.3713 

9 A1C-MiniCAM 1.1311 7,618 10.99 1.4426 8,703 24.45 2.8094 

10 A1G-AIM 1.1280 7,493 13.09 1.7470 8,704 25.58 2.9389 

11 A1G-MESSAGE 1.1280 7,617 10.66 1.3995 8,704 21.45 2.4644 

12 A1FI-MiniCAM 1.1311 7,618 11.19 1.4689 8,703 23.10 2.6543 

13 A1T-AIM 1.1280 7,493 9.79 1.3066 8,704 11.43 1.3132 

14 A1T-MESSAGE 1.1280 7,617 10.00 1.3129 8,704 12.29 1.4120 

15 A1T-MARIA 1.1280 7,617 8.41 1.1041 8,704 10.80 1.2408 

16 A1v1-MiniCAM 1.1311 7,618 9.81 1.2877 8,703 15.80 1.8155 

17 A1v2-MiniCAM 1.1591 7,228 9.91 1.3711 8,393 15.39 1.8337 

18 A2-AIM 1.1252 8,198 11.29 1.3772 11,287 16.60 1.4707 

19 A2-ASF 1.1183 8,206 11.01 1.3417 11,296 16.49 1.4598 

20 A2G-IMAGE 1.1183 8,225 9.07 1.1027 11,298 18.17 1.6082 

21 A2-MESSAGE 1.1183 8,206 10.32 1.2576 11,296 15.11 1.3376 

22 A2-MiniCAM 1.1115 8,192 9.40 1.1475 11,296 15.24 1.3492 

23 A2-A1-MiniCAM 1.1487 7,558 7.89 1.0439 9,723 10.46 1.0758 

24 B1-AIM 1.1394 7,426 10.05 1.3534 8,631 12.59 1.4587 

25 B1-ASF 1.1280 7,537 13.22 1.7540 8,704 17.50 2.0106 

26 B1-IMAGE 1.1271 7,618 10.00 1.3127 8,708 11.70 1.3436 

27 B1-MARIA 1.1280 7,617 7.80 1.0240 8,704 9.11 1.0466 

28 B1-MESSAGE 1.1280 7,617 9.19 1.2065 8,704 9.24 1.0616 

29 B1-MiniCAM 1.1311 7,618 8.23 1.0803 8,703 9.30 1.0686 

30 B1T-MESSAGE 1.1280 7,617 9.11 1.1960 8,704 8.48 0.9743 

31 B1High-MESSAGE 1.1280 7,617 8.99 1.1803 8,704 10.11 1.1615 

32 B1High-MiniCAM 1.1311 7,618 9.15 1.2011 8,703 11.93 1.3708 

33 B2-AIM 1.1328 7,612 10.21 1.3413 9,367 14.96 1.5971 

34 B2-ASF 1.1328 7,650 11.48 1.5007 9,367 15.42 1.6462 

35 B2-IMAGE 1.1328 7,869 8.47 1.0764 9,875 11.23 1.1372 

36 B2-MARIA 1.1328 7,672 8.85 1.1535 9,367 12.74 1.3601 

37 B2-MESSAGE 1.1328 7,672 9.02 1.1757 9,367 11.23 1.1989 

38 B2-MiniCAM 1.1225 7,880 9.11 1.1561 9,874 12.73 1.2892 

39 B2C-MARIA 1.1328 7,672 9.56 1.2461 9,367 14.28 1.5245 

40 B2High-MiniCAM 1.1225 7,880 9.92 1.2589 9,874 16.44 1.6650 

 
TABLE 4. Forty SRES Scenarios and Implied Annual Per Capita Emissions at 2000, 

2020, and 2050. Notes: Also shown for 2020 and 2050 is the total projected population and total 
projected emissions. 

  



 46 

 2020 2050 
 

Name of Scenario 
CO2/capi

ta 
(tonnes) 

 

Z-score 

 

Prob(Z) 
CO2/capi

ta 
(tonnes) 

 

Z-score 

 

Prob(Z) 

A1B-AIM 1.6175 11.96 0.0000 1.8390 17.50 0.0000 
A1B-ASF 1.9464 20.19 0.0000 2.9550 45.40 0.0000 

A1B-IMAGE 1.4571 7.95 0.0000 2.1470 25.20 0.0000 
A1B-MARIA 1.1409 0.05 0.4811 1.4550 7.90 0.0000 

A1B-MESSAGE 1.3864 6.18 0.0000 1.8920 18.82 0.0000 
A1B-MiniCAM 1.4098 6.77 0.0000 2.0890 23.75 0.0000 

A1C-AIM 1.9138 19.37 0.0000 3.0780 48.48 0.0000 
A1C-MESSAGE 1.4402 7.53 0.0000 2.3710 30.80 0.0000 
A1C-MiniCAM 1.4426 7.59 0.0000 2.8090 41.75 0.0000 

A1G-AIM 1.7470 15.20 0.0000 2.9390 45.00 0.0000 
A1G-MESSAGE 1.3995 6.51 0.0000 2.4640 33.13 0.0000 
A1FI-MiniCAM 1.4689 8.25 0.0000 2.6540 37.88 0.0000 

A1T-AIM 1.3066 4.19 0.0000 1.3130 4.35 0.0000 
A1T-MESSAGE 1.3129 4.35 0.0000 1.4120 6.82 0.0000 

A1T-MARIA 1.1041 -0.87 0.8085 1.2410 2.55 0.0054 
A1v1-MiniCAM 1.2877 3.72 0.0001 1.8150 16.90 0.0000 
A1v2-MiniCAM 1.3711 5.80 0.0000 1.8340 17.38 0.0000 

A2-AIM 1.3772 5.96 0.0000 1.4710 8.30 0.0000 
A2-ASF 1.3417 5.07 0.0000 1.4600 8.03 0.0000 

A2G-IMAGE 1.1027 -0.91 0.8179 1.6080 11.73 0.0000 
A2-MESSAGE 1.2576 2.96 0.0015 1.3380 4.98 0.0000 
A2-MiniCAM 1.1475 0.21 0.4159 1.3490 5.25 0.0000 

A2-A1-MiniCAM 1.0439 -2.38 0.9913 1.0760 -1.58 0.9424 
B1-AIM 1.3534 5.36 0.0000 1.4590 8.00 0.0000 
B1-ASF 1.7540 15.37 0.0000 2.0110 21.80 0.0000 

B1-IMAGE 1.3127 4.34 0.0000 1.3440 5.12 0.0000 
B1-MARIA 1.0240 -2.87 0.9980 1.0470 -2.30 0.9893 

B1-MESSAGE 1.2065 1.69 0.0458 1.0620 -1.92 0.9729 
B1-MiniCAM 1.0803 -1.47 0.9289 1.0690 -1.75 0.9599 

B1T-MESSAGE 1.1960 1.42 0.0771 0.9740 -4.13 1.0000 
B1High-MESSAGE 1.1803 1.03 0.1509 1.1620 0.57 0.2826 
B1High-MiniCAM 1.2011 1.55 0.0603 1.3710 5.80 0.0000 

B2-AIM 1.3413 5.06 0.0000 1.5970 11.45 0.0000 
B2-ASF 1.5007 9.04 0.0000 1.6460 12.68 0.0000 

B2-IMAGE 1.0764 -1.56 0.9412 1.1370 -0.05 0.5199 
B2-MARIA 1.1535 0.36 0.3585 1.3600 5.53 0.0000 

B2-MESSAGE 1.1757 0.92 0.1794 1.1990 1.50 0.0668 
B2-MiniCAM 1.1561 0.43 0.3345 1.2890 3.75 0.0001 
B2C-MARIA 1.2461 2.68 0.0037 1.5250 9.65 0.0000 

B2High-MiniCAM 1.2589 3.00 0.0014 1.6650 13.15 0.0000 

 
TABLE 5. Probability of Observing Projected Annual Per Capita Emissions, or 

Higher, as of 2020 and 2050, for each of the 40 SRES Scenario, if distribution is 
N(1.139, 0.402). Notes: Z-score: number of SDs above or below the observed mean of 1.139 
tonnes. Prob(Z): probability of observing SRES emissions or higher, evaluated using N(1.139, 
0.0402). Rows in italics show the 2020 outcome within 5 SDs of the observed mean. Rows in bold 
show the same for 2050. 

 


